首页> 外文学位 >Nanobiocatalytic Degradation of Acid Orange 7.
【24h】

Nanobiocatalytic Degradation of Acid Orange 7.

机译:酸性橙的纳米生物催化降解7。

获取原文
获取原文并翻译 | 示例

摘要

The catalytic properties of various metal nanoparticles have led to their use in environmental remediation applications. However, these remediation strategies are limited by their ability to deliver catalytic nanoparticles and a suitable electron donor to large treatment zones. Clostridium pasteurianum BC1 cells, loaded with bio-Pd nanoparticles, were used to effectively catalyze the reductive degradation and removal of Acid Orange 7 (AO7), a model azo compound. Hydrogen produced fermentatively by the C. pasteurianum BC1 acted as the electron donor for the process. Pd-free bacterial cultures or control experiments conducted with heat-killed cells showed limited reduction of AO7. Experiments also showed that the in situ biological production of H2 by C. pasteurianum BC1 was essential for the degradation of AO7, which suggests a novel process where the in situ microbial production of hydrogen is directly coupled to the catalytic bio-Pd mediated reduction of AO7. The differences in initial degradation rate for experiments conducted using catalyst concentrations of 1ppm Pd and 5ppm Pd and an azo dye concentration of 100ppm AO7 was 0.39 /hr and 1.94 /hr respectively, demonstrating the importance of higher concentrations of active Pd(0). The degradation of AO7 was quick as demonstrated by complete reductive degradation of 50ppm AO7 in 2 hours in experiments conducted using a catalyst concentration of 5ppm Pd. Dye degradation products were analyzed via Gas Chromatograph-Mass Spectrometer (GCMS), High Performance Liquid Chromatography (HPLC), UltraViolet-Visible spectrophotometer (UV-Vis) and Matrix-Assisted Laser Desorption/Ionization (MALDI) spectrometry. The presence of 1-amino 2-naphthol, one of the hypothesized degradation products, was confirmed using mass spectrometry.
机译:各种金属纳米粒子的催化性能已导致其在环境修复应用中的使用。然而,这些补救策略受到其将催化纳米颗粒和合适的电子供体递送至大处理区的能力的限制。负载有生物钯纳米粒子的巴氏梭菌BC1细胞可有效催化还原降解和去除模型偶氮化合物酸性橙7(AO7)。由巴氏梭菌BC1发酵产生的氢充当该过程的电子供体。用热灭活的细胞进行的无Pd细菌培养或对照实验表明AO7的还原作用有限。实验还表明,巴氏梭菌BC1的原位生物生产对于AO7的降解至关重要,这表明了一种新的过程,其中原位产生的氢气直接与催化生物Pd介导的AO7还原相关。对于使用1ppm Pd和5ppm Pd的催化剂浓度和100ppm AO7的偶氮染料浓度进行的实验,初始降解率的差异分别为0.39 / hr和1.94 / hr,这表明较高浓度的活性Pd(0)的重要性。在使用5ppm Pd的催化剂进行的实验中,在2小时内50ppm AO7的完全还原降解证明了AO7的降解很快。染料降解产物通过气相色谱-质谱仪(GCMS),高效液相色谱仪(HPLC),紫外可见分光光度计(UV-Vis)和基质辅助激光解吸/电离(MALDI)光谱仪进行分析。使用质谱法确认了假设的降解产物之一1-氨基2-萘酚的存在。

著录项

  • 作者

    Hastings, Jason.;

  • 作者单位

    University of Nevada, Reno.;

  • 授予单位 University of Nevada, Reno.;
  • 学科 Nanotechnology.;Engineering Materials Science.;Engineering Environmental.
  • 学位 M.S.
  • 年度 2010
  • 页码 68 p.
  • 总页数 68
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号