首页> 外文学位 >On the uncertainties and dynamics of Pacific interannual and decadal climate variability and climate change .
【24h】

On the uncertainties and dynamics of Pacific interannual and decadal climate variability and climate change .

机译:太平洋年际和年代际气候变异与气候变化的不确定和动态。

获取原文
获取原文并翻译 | 示例

摘要

Tropical and extratropical Pacific decadal climate variability substantially impact physical and biological systems in the Pacific Ocean and strongly influence global climate through teleconnection patterns. Current understanding of Pacific decadal variability centers around three key modes of variability in the atmosphere and ocean: the El Nino-Southern Oscillation (ENSO), the Aleutian Low (AL), and the Pacific Decadal Oscillation (PDO). However, recent literature has highlighted the emerging roles of secondary modes of variability of the tropical and extratropical Pacific atmosphere and ocean that explain and drive other aspects of the climate system (i.e., the Central Pacific Warming (CPW) phenomenon, the North Pacific Oscillation (NPO), and the North Pacific Gyre Oscillation (NPGO)). This work analyzes the statistics and uncertainties behind Pacific interannual and decadal-scale climate variability in observations and models, and in particular, focuses on better understanding the importance of the roles of the CPW, NPO, and NPGO for predictability of global climate change.;The study begins by examining the dynamics of the NPO and its role in Pacific interannual and decadal climate variability. While the NPO is considered an intrinsic mode of atmospheric variability in the North Pacific, analyses demonstrate that the individual poles of the NPO behave differently. In particular, the subtropical node contains strong power at low frequencies (periods of 7-10 years), but not the northern pole. The source of this low-frequency variability in the southern node of the NPO is tropical Pacific sea surface temperature (SST) variability, as shown through a simple modeling experiment. NPO variability is further divided into: (a) a high-frequency component associated with stochastic forcing and the ENSO precursor signature; and (b) a low-frequency component directly connected with tropical Pacific SST forcing. The NPO-induced variability by the tropical Pacific SSTa is then integrated by the underlying ocean surface to form the decadal-scale NPGO signal. Thus, a new link between the CPW, the NPO, and the NPGO is formed, akin to the ENSO-AL-PDO framework.;The new framework of North Pacific decadal variability (NPDV) is then evaluated in 24 state-of-the-art coupled climate models used for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). Results indicate that the PDO and NPGO do not exhibit significant changes in their spatial and temporal characteristics under projected greenhouse warming. However, the ability of the models to capture the dynamics associated with the PDO and NPGO is questionable. The temporal and spatial statistics of PDO and NPGO exhibit significant discrepancies from observations in their 20th century climate, especially for the NPGO. Furthermore, most models lack the proper connections between extratropical and tropical Pacific, for both the ENSO-AL-PDO and CPW-NPO-NPGO connections. In fact, the atmospheric teleconnections associated with the CPW phenomenon in some models have a significant projection on, and excite, the AL/PDO coupled mode instead.;The last part of the dissertation explores further the importance of the CPW mode by comparing and contrasting two popular paleoclimate SST anomaly reconstruction methods used for tropical Indo-Pacific SSTs. The first method exploits the high correlation between the canonical ENSO mode and tropical precipitation; the second method uses a multi-regression model that exploits the multiple modes of covariability between tropical precipitation and SSTs, including the CPW mode. The multi-regression approach demonstrates higher skill throughout the tropical Indo-Pacific than the first approach, illustrating the importance of including the CPW phenomenon in understanding past climates.
机译:热带和温带太平洋的年代际气候变化极大地影响了太平洋的物理和生物系统,并通过遥相关模式强烈影响了全球气候。当前对太平洋年代际变化的理解围绕着大气和海洋的三种主要变化模式:厄尔尼诺-南方涛动(ENSO),阿留申低压(AL)和太平洋年代际涛动(PDO)。但是,最近的文献强调了热带和亚热带太平洋大气和海洋变率的次要模式的新兴作用,这些次要模式解释并驱动了气候系统的其他方面(例如,中太平洋变暖(CPW)现象,北太平洋涛动( NPO)和北太平洋涡旋振荡(NPGO)。这项工作在观测和模型中分析了太平洋年际和年代际气候变化背后的统计数据和不确定性,特别是着重于更好地了解CPW,NPO和NPGO在全球气候变化可预测性中的重要性。该研究首先研究了NPO的动态及其在太平洋年际和年代际气候变化中的作用。虽然NPO被认为是北太平洋大气变率的一种固有模式,但分析表明NPO的各个极点的行为都不同。特别是,亚热带节点在低频(7-10年)内包含强大的功率,但不包含北极。 NPO南部节点这种低频变化的来源是热带太平洋海表温度(SST)的变化,如通过简单的建模实验所示。 NPO的可变性进一步分为:(a)与随机强迫和ENSO前体特征相关的高频分量; (b)与热带太平洋海表温度强迫直接相关的低频分量。然后,由热带太平洋SSTa引起的NPO变异性被下面的海面积分,形成了十年尺度的NPGO信号。这样,就形成了CPW,NPO和NPGO之间的新链接,类似于ENSO-AL-PDO框架。然后在24个最新状态下评估了北太平洋年代际变率(NPDV)的新框架。政府间气候变化专门委员会(IPCC)第四次评估报告(AR4)中使用的最先进的气候模型。结果表明,在预计的温室气候变暖下,PDO和NPGO的时空特征没有显着变化。但是,模型捕捉与PDO和NPGO相关的动力学的能力令人怀疑。 PDO和NPGO的时空统计数据与20世纪气候中的观测值(尤其是NPGO)存在显着差异。此外,对于ENSO-AL-PDO和CPW-NPO-NPGO连接,大多数模型都缺乏温带和热带太平洋之间的适当连接。实际上,在某些模型中与CPW现象相关的大气遥相关在AL / PDO耦合模式上有显着的预测,并激发了这种模式。论文的最后一部分通过比较和对比进一步探讨了CPW模式的重要性。热带印度洋-太平洋SST有两种流行的古气候SST异常重建方法。第一种方法利用标准ENSO模式与热带降水之间的高度相关性。第二种方法使用了多元回归模型,该模型利用了热带降水和海表温度之间协变的多种模式,包括CPW模式。与第一种方法相比,多元回归方法在整个印度洋-太平洋地区显示出更高的技能,从而说明了将CPW现象纳入对过去气候的了解中的重要性。

著录项

  • 作者

    Furtado, Jason C.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Climate Change.;Meteorology.;Atmospheric Sciences.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 179 p.
  • 总页数 179
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:36:49

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号