首页> 外文学位 >Regulation of peripheral nerve regeneration by the mtor pathway.
【24h】

Regulation of peripheral nerve regeneration by the mtor pathway.

机译:通过mtor途径调节周围神经再生。

获取原文
获取原文并翻译 | 示例

摘要

While neurons in the central nervous system (CNS) have limited capacity for regrowth after damage, neurons in the peripheral nervous system (PNS) have a robust ability to regenerate their axons following injury. Successful regeneration depends upon both extrinsic cues in the environment and the activation of intrinsic mechanisms to promote regrowth. A number of inhibitory molecules in the CNS environment that prevent axonal regrowth have been identified, but less is known regarding the signaling mechanisms that regulate regenerative ability in PNS neurons. Here, we explored multiple components of injury signaling in the PNS, including the retrograde transport of local axonal injury signals, enhancement of axonal growth capacity in the cell body, and the response of Schwann cells that myelinate the damaged axon.We first addressed how axonal injury triggers enhancement of axonal growth capacity in PNS neurons. The lack of regenerative ability of CNS neurons has been linked to downregulation of the mammalian target of rapamycin (mTOR) pathway. We find that PNS dorsal root ganglia neurons (DRGs) activate mTOR following damage, and that this activity contributes to enhance axonal growth capacity following injury. Furthermore, upregulation of mTOR activity by deletion of tuberous sclerosis complex 2 (TSC2) in DRGs is sufficient to enhance axonal growth capacity in vitro and in vivo. We identified GAP-43 as a downstream target of this pathway, which may contribute to enhance regenerative ability. However, while genetic upregulation of mTOR activity in sensory neurons facilitates axonal regrowth, it also leads to a number of developmental and functional defects, including aberrant target innervation. Thus, while manipulation of the mTOR activity could stimulate nerve regeneration in the PNS, fine control of mTOR activity may be required for proper target innervation and functional recovery.mTOR activation in the damaged neuron is likely to represent one of several signaling events that mediate nerve regeneration. We thus also explored other aspects of peripheral nerve injury signaling, including the retrograde transport of local injury signals by axonal vesicles, and the response of myelinating Schwann cells to axonal damage. Our results indicate that several classes of signaling pathways occurring both in axons and Schwann cells cooperate to generate a robust regenerative response. A better understanding of the signaling pathways leading to increased regenerative growth ability of PNS neurons may guide new strategies to enhance nerve regeneration in the CNS.
机译:尽管中枢神经系统(CNS)中的神经元受损后再生的能力有限,但周围神经系统(PNS)中的神经元在损伤后具有强大的轴突再生能力。成功的再生取决于环境中的外部线索和促进再生长的内在机制的激活。已经确定了中枢神经系统环境中许多防止轴突再生的抑制分子,但是对于调节PNS神经元再生能力的信号传导机制知之甚少。在这里,我们探讨了PNS中损伤信号转导的多个组成部分,包括局部轴突损伤信号的逆行转运,细胞体中轴突生长能力的增强以及使受损轴突产生髓鞘的雪旺细胞的反应。损伤触发PNS神经元的轴突生长能力增强。中枢神经系统神经元再生能力的缺乏与哺乳动物雷帕霉素靶标(mTOR)通路的下调有关。我们发现PNS背根神经节神经元(DRGs)激活损伤后的mTOR,并且这种活动有助于增强损伤后的轴突生长能力。此外,通过在DRG中缺失结节性硬化复合物2(TSC2)来上调mTOR活性足以增强体外和体内的轴突生长能力。我们将GAP-43鉴定为该途径的下游靶标,这可能有助于增强再生能力。然而,虽然感觉神经元中mTOR活性的基因上调促进了轴突的再生,但它也导致了许多发育和功能缺陷,包括异常的靶标神经支配。因此,虽然操纵mTOR活性可以刺激PNS中的神经再生,但可能需要对mTOR活性进行精细控制才能适当地进行靶标神经支配和功能恢复。受损神经元中的mTOR激活可能代表了介导神经的几种信号事件之一。再生。因此,我们还探讨了周围神经损伤信号传导的其他方面,包括轴突囊泡逆行转运局部损伤信号,以及髓鞘雪旺细胞对轴突损伤的反应。我们的结果表明,在轴突和雪旺细胞中都发生的几类信号通路共同产生了强大的再生反应。对导致PNS神经元再生生长能力增强的信号通路的更好理解可能会指导增强CNS中神经再生的新策略。

著录项

  • 作者

    Abe, Namiko.;

  • 作者单位

    Washington University in St. Louis.;

  • 授予单位 Washington University in St. Louis.;
  • 学科 Biology Neuroscience.Biology Cell.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号