首页> 外文学位 >Micro/nano fins for single phase heat transfer enhancement and development of heat flux boundary condition for DSMC-IP
【24h】

Micro/nano fins for single phase heat transfer enhancement and development of heat flux boundary condition for DSMC-IP

机译:用于单相传热的微/纳米翅片和DSMC-IP的热通量边界条件的发展

获取原文
获取原文并翻译 | 示例

摘要

High component densities and high power consumption has led a tremendous increase in the heat generated in electronics. The high thermal conductivity and large surface to volume ratios of nanostructures such as carbon nanotubes and metallic nanowires make them a potential solution for thermal management as micro/nano fins. Though experimental work has been attempted, not much theoretical/numerical work has been done to study the effect of the parameters involved, like fin-geometry, gas-rarefaction etc. Due to the small length scales involved, the gas flow through these structures cannot be considered as continuum and the phenomenon of velocity and temperature slips considerably affect the thermal performance. This thesis studies the single phase heat transfer from micro/nano fins and proposes a heat flux boundary condition for DSMC-IP, which would prove essential in further study of micro/nano fins.;Firstly, a simple analytical model is developed to study the effect of gas rarefaction, on the performance of micro/nano fins. It is shown that the rarefaction of gas significantly reduces the heat transfer achieved compared to that postulated by the continuum approach.;Second, a study of the fluid flow and heat transfer in a fin integrated microchannel has been conducted using DSMC-IP method. It is found that such integration significantly increases the heat transfer obtained per unit pumping power, proving that micro/nano fins lead to an increase in the efficiency of the heat transfer from the surface. During further study on the effect of fin separation on the thermal performance of microchannels, it was found that the use of constant temperature wall boundaries is ineffective in capturing the effect of fin separation. Therefore, a heat flux boundary condition for DSMC-IP has been developed and validated.;Finally, a study on the flow through constant heat flux microchannels is conducted to understand the effect of rarefaction on the fluid flow and heat transfer. It is seen that the fluid flow is accurately predicted by the new boundary condition but there is a considerable error in the Nusselt number calculated by the simulation. The possible reasons this error are iterated and future work is proposed.
机译:高组件密度和高功耗导致电子设备产生的热量大大增加。纳米结构(例如碳纳米管和金属纳米线)的高导热性和大的表面体积比使它们成为微米/纳米鳍片热管理的潜在解决方案。尽管已经尝试了实验工作,但是并没有进行太多的理论/数值工作来研究所涉及参数的影响,例如翅片几何形状,气体反射率等。由于所涉及的长度尺度小,因此无法通过这些结构的气流被认为是连续的,速度和温度滑移现象极大地影响了热性能。本文研究了微/纳米翅片的单相传热,并提出了DSMC-IP的热通量边界条件,这对于进一步研究微/纳米翅片是必不可少的。气体稀化对微/纳米鳍片性能的影响。结果表明,与连续介质法相比,气体的稀化显着降低了传热。第二,利用DSMC-IP方法对翅片集成微通道中的流体流动和传热进行了研究。已经发现,这种集成显着增加了每单位泵送功率获得的热传递,证明了微/纳米翅片导致从表面的热传递效率的提高。在进一步研究翅片分离对微通道热性能的影响时,发现使用恒定温度壁边界对捕获翅片分离的影响无效。因此,已经开发出并验证了DSMC-IP的热通量边界条件。最后,对恒定热通量微通道的流动进行了研究,以了解稀疏化对流体流动和传热的影响。可以看出,通过新的边界条件可以准确地预测流体流量,但是通过模拟计算得出的努塞尔数存在相当大的误差。反复出现此错误的可能原因,并提出了今后的工作。

著录项

  • 作者

    Suresh, Ramanan.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Mechanical engineering.
  • 学位 M.S.
  • 年度 2009
  • 页码 91 p.
  • 总页数 91
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号