首页> 外文学位 >Flame synthesis of single -walled carbon nanotubes.
【24h】

Flame synthesis of single -walled carbon nanotubes.

机译:单壁碳纳米管的火焰合成。

获取原文
获取原文并翻译 | 示例

摘要

Catalytic formation of single-walled carbon nanotubes in diffusion flames is investigated as a potential means of large-scale production. An oxygen-enriched inverse diffusion flame is utilized to control the pathway of carbon at high temperature. This type of flame is shown to minimize polycyclic aromatic hydrocarbon (PAH) and soot formation, while maintaining a high temperature, carbon-rich environment for nanotube formation. Composite catalyst particles for nanotube formation, consisting of iron, silicon, and oxygen, are formed in situ by introducing precursor materials into the flame. These composite catalysts result in significantly higher catalyst yields than iron oxide catalysts, but both catalysts have short lifetimes. Thus, the reaction mechanisms for nanotube nucleation and growth in the flame environment are examined. A differential mobility analyzer is developed and used as an online diagnostic tool. Density functional theory calculations and Car-Parrinello molecular dynamics simulations are employed to determine the structure of the catalysts and how this structure might affect nanotube nucleation. The introduction of silicon into the flame environment results in a non-uniform catalyst surface, which allows for preferential nanotube nucleation on one side of the catalyst. Moreover, the flame environment and the catalyst particle trajectories are modeled. The catalysts are shown to follow isolines in temperature and species, indicating that a change in flame environment does not cause short catalyst lifetimes. A reaction mechanism is postulated for short lifetimes, which is based on catalyst particle reduction and the probability of carbon clustering on the catalyst surface. The results of these studies provide a foundation for future research on improving the catalyst/flame interaction to achieve large-scale production.
机译:研究了在扩散火焰中催化形成单壁碳纳米管作为大规模生产的潜在手段。富氧逆扩散火焰用于控制高温下碳的路径。已显示出这种类型的火焰可以最大程度地减少多环芳烃(PAH)和烟灰的形成,同时还能保持高温,富碳的环境来形成纳米管。通过将前体材料引入火焰中,就可以形成由铁,硅和氧组成的用于形成纳米管的复合催化剂颗粒。这些复合催化剂比氧化铁催化剂产生明显更高的催化剂产率,但是两种催化剂的寿命短。因此,研究了在火焰环境中纳米管成核和生长的反应机理。开发了差动迁移率分析仪,并将其用作在线诊断工具。密度泛函理论计算和Car-Parrinello分子动力学模拟用于确定催化剂的结构以及该结构如何影响纳米管成核。将硅引入火焰环境会导致催化剂表面不均匀,从而使催化剂一侧的纳米管优先成核。而且,对火焰环境和催化剂颗粒的轨迹进行了建模。催化剂在温度和种类上遵循等值线,表明火焰环境的变化不会导致催化剂寿命短。假定反应机理的寿命短,这是基于催化剂颗粒的减少和催化剂表面碳簇的可能性。这些研究的结果为进一步研究提高催化剂/火焰相互作用以实现大规模生产提供了基础。

著录项

  • 作者

    Unrau, Chad James.;

  • 作者单位

    Washington University in St. Louis.;

  • 授予单位 Washington University in St. Louis.;
  • 学科 Chemical engineering.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 199 p.
  • 总页数 199
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号