首页> 外文学位 >Robotic intervention for people with stiff-knee gait after stroke.
【24h】

Robotic intervention for people with stiff-knee gait after stroke.

机译:对中风后膝盖僵硬步态的人进行机器人干预。

获取原文
获取原文并翻译 | 示例

摘要

The inability to adequately bend the knee during swing phase of walking, known as Stiff-Knee gait (SKG), commonly occurs after stroke. It is believed other compensatory, energy-consuming kinematics such as pelvic obliquity and hip abduction accompany the "stiff" knee to help clear the foot. Models have shown that improving knee flexion torque before the paretic limb leaves the ground will result in greater knee flexion angle during swing, thus greater foot clearance. If these gait compensations are motivated by foot clearance, then assisting preswing knee flexion torque will reduce gait compensations.;To examine this hypothesis, we needed a lightweight, backdrivable knee actuator. After finding existing actuators insufficient, we developed a concept that remotely controlled deflection of a compliant spring through a sheathed cable. This concept was developed into a knee flexion actuator capable of selectively applying torque during gait. Its performance characteristics made this device, known as SERKA (Series Elastic Remote Knee Actuator), optimally suited to our needs.;Previous work has shown that some robotic assistance reduces its users' voluntary drive. Therefore, we examined the effect of isolated preswing knee flexion assistance over 15 minutes of treadmill walking on non-disabled controls. While the assistance created a significant increase in knee flexion angle, it revealed sparse evidence of adaptation, lacking significant changes in outcomes upon removal of assistance. This lack of adaptation to assistance is advantageous for assistive devices.;We then examined the effect of knee flexion assistance on gait compensations in nine stroke subjects, examining changes in peak knee flexion angle, hip abduction and pelvic obliquity. The results were compared to the controls ran earlier. Stroke subjects significantly increased hip abduction during assistance instead of the predicted decrease, with no change in controls. We infer that this is due to abnormal coordination, which may be a primary cause of gait impairment after stroke. In conclusion, rehabilitation science must equally account for neural issues along with mechanical ones in people with neurological disabilities. We hope this work inspires others to investigate underlying mechanisms of disease states and their modes of neural control en route to rehabilitation and assistive device development.
机译:通常在中风后发生在步行的摆动阶段无法充分弯曲膝盖的现象,即僵硬的膝盖步态(SKG)。据认为,其他补偿性,消耗能量的运动学,例如骨盆倾斜和髋关节外展,都伴随着“僵硬”膝盖来帮助清除脚部。模型显示,在假肢离开地面之前提高膝部弯曲扭矩会导致挥杆过程中膝部弯曲角度更大,从而使脚部间隙更大。如果这些步态补偿是由脚部间隙引起的,则辅助摆动膝关节前屈扭矩会降低步态补偿。为了验证这一假设,我们需要一个轻巧的,可向后驱动的膝部执行器。在发现现有的执行器不足之后,我们提出了一种概念,即通过护套电缆对柔性弹簧进行远程控制。该概念被发展为能够在步态中选择性施加扭矩的膝部弯曲致动器。它的性能特点使该设备被称为SERKA(系列弹性远程膝盖致动器),最适合我们的需求。;以前的工作表明,某些机器人辅助设备可以减少用户的自愿驾驶。因此,我们研究了在跑步机上行走15分钟后,单独的前摆膝关节屈曲辅助对非残疾对照者的影响。虽然援助使膝关节屈曲角度明显增加,但显示了适应的稀疏证据,在移除援助后结果没有明显变化。缺乏对辅助的适应性对于辅助设备是有利的。;然后,我们检查了九名中风受试者的膝部屈曲辅助对步态补偿的影响,检查了峰值膝部屈曲角度,髋关节外展和骨盆倾斜的变化。将结果与之前运行的对照进行比较。在辅助过程中,中风受试者的髋关节外展明显增加,而不是预期的减少,而对照组无变化。我们推测这是由于异常的协调,这可能是中风后步态受损的主要原因。总之,康复科学必须同等地考虑神经系统疾病患者的神经问题和机械问题。我们希望这项工作能激励其他人研究疾病状态的潜在机制及其在康复和辅助设备开发过程中的神经控制方式。

著录项

  • 作者

    Sulzer, James S.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Mechanical.;Health Sciences Rehabilitation and Therapy.;Engineering Robotics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号