首页> 外文学位 >On dissipative flow structures in supersonic pressure exchange - An experimental investigation.
【24h】

On dissipative flow structures in supersonic pressure exchange - An experimental investigation.

机译:超音速压力交换中的耗散流动结构-实验研究。

获取原文
获取原文并翻译 | 示例

摘要

It has been envisioned that crypto-steady pressure-exchange can be obtained by a supersonic jet impinging on a freely spinning rotor (axial configuration). Relative to the laboratory, a supersonic primary fluid forms a helical pattern whereby a secondary fluid gets entrained in the interstices of the helices and, by the use of an appropriate shroud, is forced into a duct or channel. Thus, work is done by the expanding primary fluid on the compressible secondary fluid by pressure forces acting across the helical boundary between the two fluids. The benefits of pressure exchange technology are elucidated in this dissertation, with potential applications in automotive refrigeration and sea-water desalination, and with the implementation of a practical device such as an ejector of higher efficiency and environmental benefits within its grasp.;The closest counterpart of pressure exchange ejector in the spectrum of momentum transferring devices is a steady flow ejector. The device is least complex, having no moving parts, but relies on highly dissipative turbulent entrainment for operation. Sensor based wall pressure measurements indicate the presence of a normal shock and associated maximum static pressure rise at a location 31 diameters length from exit plane of the supersonic nozzle in the diffuser region of an experimental "mixing" ejector. Mixing between the two fluid streams was not directly measured, but inferred to be an ongoing process in the typical "mixing" ejector, from the location of the normal shock. The length scale of mixing zone in the steady flow ejector was therefore established to be approximately 31 diameters length from exit plane of the supersonic nozzle. The overall maximum efficiencies (turbomachinery analog model) of two laboratory scale ejectors, viz., compact and mixing ejectors of different mixing region lengths were determined to be as low as 18% and 8.5% respectively. The limitations of steady flow ejectors from low overall efficiencies as consequences of turbulent mixing and normal shocks (entropy generators), and large lengths of mixing regions, conclusively outweighed the advantage of low complexity.;Concurrently, pressure exchange technology seeks to build on those aforementioned limitations by circumventing mixing processes, adding the complexity of one non-steady element (rotor), in the laboratory frame of reference. Cone-vane type of rotors (Ramp Vane and Double Cone type) with three vanes in a primary supersonic flow field produce "pseudoblades" that are highly compliant, natural, fluidic vanes of greater density than the entrained secondary fluid. Pseudoblades mimic the action of solid impellers in conventional turbomachinery but are constrained by spatio-temporal deterioration characteristics and shear layer growth.;Shear layer growth was qualitatively observed using a non-invasive technique called Schlieren Photography and quantitatively analyzed using another non-invasive experimental technique called Laser Doppler Velocimetry (LDV). Shear layer turbulence intensity measurements (TI) from the LDV technique present the most important contribution of this dissertation research, i.e., the determination of the "effective persistence length of stationary pseudoblades", in the presence of a rotor, the nose of which is axisymmetrically aligned on the exit plane of a supersonic nozzle. This length is determined to be approximately equal to the diameter of the supersonic nozzle.;Steady, supersonic, viscous, k - epsilon CFD (FLUENT) results suggest that a rotor design termed as Double Cone Rotor (25 deg. semi-cone vertex angle) is the most conducive for pseudoblade formation. But prior research using commercial CFD solvers show varying levels of shear layer growth and pseudoblade deterioration under the choice of solvers. The dissertation experimentally confirms the presence of pseudoblades in a rotor-supersonic flow field by computing the Meyers correlation coeffient (C or instantaneous velocity - data rate correlation coefficient) using the LDV technique, and solves the dilemma of commercial CFD solvers such as FLUENT.;Schlieren images highlighted the presence of entropy generating oblique shocks that are consistent with theory and remain salient in rotor-supersonic pressure exchange flow fields. From a non-dimensional entropy rise parameter &parl0;DSR&parr0; computed from schlieren images, it was inferred that Double Cone Rotor produces 3 orders of magnitude higher entropy than the Ramp Vane Rotor accounted by oblique shocks, inspite of better pseudoblade structure. A lesser than 25 degree semi-cone vertex angle for the Double Cone Rotor is suggested that will commensurate with lower entropy rise and greatly enhance the efficiency of pressure exchange devices.
机译:可以预见的是,可以通过以超音速射流撞击自由旋转的转子(轴向构造)来获得密码稳定的压力交换。相对于实验室,超音速一次流体形成螺旋状,从而使二次流体夹带在螺旋的空隙中,并通过使用适当的罩将其压入管道或通道中。因此,通过作用在两种流体之间的螺旋边界上的压力使主要流体在可压缩的辅助流体上膨胀来完成工作。本文阐述了压力交换技术的优势,它在汽车制冷和海水淡化中的潜在应用,并在其掌握的范围内实现了一种实用的设备,例如具有更高效率和环境效益的喷射器。动量传递装置范围内的压力交换喷射器中的一个是稳定流喷射器。该装置最不复杂,没有活动部件,但依靠高度耗散的湍流夹带进行操作。基于传感器的壁压力测量结果表明,在实验性“混合”喷射器的扩散器区域中,在距超音速喷嘴出口平面直径31毫米的位置处,存在法向冲击和相关的最大静压升高。两种流体流之间的混合不是直接测量的,而是从正常冲击的位置推断是典型的“混合”喷射器中正在进行的过程。因此,稳定流动喷射器中混合区的长度范围被确定为距超声喷嘴的出口平面约31个直径长度。两种实验室规模的喷射器,即具有不同混合区域长度的紧凑型喷射器和混合喷射器的总最大效率(涡轮机械模拟模型)分别确定为低至18%和8.5%。由于湍流混合和法向冲击(熵产生器)的后果以及混合区域的长度过长,整体效率低而导致的稳流喷射器的局限性最终超过了低复杂性的优势。同时,压力交换技术寻求在上述基础上发展通过在实验室参考框架中规避混合过程的局限性,增加了一种非稳态元素(转子)的复杂性。在主超音速流场中具有三个叶片的锥形叶片型转子(斜坡叶片和双锥型转子)产生的“伪叶片”是高度顺应的,自然的,流体性的叶片,其密度大于夹带的次级流体。伪叶片模拟常规涡轮机械中的固体叶轮的作用,但受到时空劣化特征和剪切层生长的限制。;使用称为Schlieren Photography的非侵入性技术定性地观察了剪切层的生长,并使用另一种非侵入性实验技术进行了定量分析称为激光多普勒测速(LDV)。 LDV技术的剪切层湍流强度测量(TI)代表了本论文研究的最重要贡献,即在存在转子的情况下确定“固定伪叶片的有效持久长度”,其转子的轴对称在超音速喷嘴的出口平面上对齐。确定该长度大约等于超音速喷嘴的直径。;稳定,超音速,粘性,k-εCFD(FLUENT)结果表明,转子设计被称为双锥转子(25度半圆锥顶角) )最有利于伪刀片的形成。但是,以前使用商用CFD求解器进行的研究表明,在选择求解器的情况下,剪切层的生长水平和假刀片的劣化程度各不相同。本文通过使用LDV技术计算Meyers相关系数(C或瞬时速度-数据速率相关系数),实验确定了转子-超音速流场中伪叶片的存在,并解决了商用CFD求解器(如FLUENT)的困境。 Schlieren的图像突出显示了熵产生的倾斜冲击的存在,该熵与理论一致,并且在转子-超音速压力交换流场中仍然很明显。根据无量纲熵上升参数&parl0; DSR&parr0;根据schlieren图像计算得出,尽管伪叶片结构更好,但双斜锥转子产生的熵比斜角叶片转子产生的熵高3个数量级。建议双锥转子的半锥顶角小于25度,这将与较低的熵升高相对应,并大大提高压力交换装置的效率。

著录项

  • 作者

    Bulusu, Kartik Venkat.;

  • 作者单位

    The George Washington University.;

  • 授予单位 The George Washington University.;
  • 学科 Engineering Aerospace.;Engineering Mechanical.;Physics Fluid and Plasma.
  • 学位 D.Sc.
  • 年度 2010
  • 页码 478 p.
  • 总页数 478
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号