首页> 外文学位 >Covalent biofunctionalization of fluorous-based surfaces via click chemistry.
【24h】

Covalent biofunctionalization of fluorous-based surfaces via click chemistry.

机译:通过点击化学对基于氟的表面进行共价生物功能化。

获取原文
获取原文并翻译 | 示例

摘要

The first covalent functionalization of fluorous thin films using the Cu-catalyzed azide-alkyne cycloaddition reaction (CuCAAC, a "click" reaction) is presented. The "clickable" azido or ethynyl fluorous slides were easily prepared by non-covalent immobilization based on strong fluorous interactions between the fluorous-tagged alkynes or azides and the commercial perfluorocarbon-coated glass slides. CuCAAC reaction with the azide- or alkyne-derivatives was readily performed on these "clickable" slides. Using this approach, a variety of biomolecules were attached onto the surfaces under aqueous conditions and in a microarray format.;As compared to the direct fluourous immobilization, an obvious advantage of immobilization of biomolecules via CuAAC reaction is that it can be performed in aqueous buffer solutions to improve solubility and avoid denaturing of the biomolecules. Significantly, we demonstrate that our method may also improve the performance of the functionalized surfaces. Thus, oligo(ethylene) glycol (OEG)-presenting surfaces were prepared by the two immobilization methods, using ethynyl-terminated or fluorous-modified OEG derivatives. XPS and cell adhesion results showed that protein (fibrinogen) adsorbed on the fluorous-OEG modified surfaces. Significantly, the OEG surfaces prepared via CuAAC reaction completely repelled fibrinogen. Furthermore, these surfaces remained effective in preventing adhesion of NIH 3T3 fibroblast cells for up to 8 weeks.;This approach was also applied to present antimicrobial peptides (AMPs) on fluorous-based contact lens. Specifically, LL-25, an AMP with an azido tag, was tethered using the conventional carbodiimide coupling and the CuCAAC reaction. It was observed that although the peptide density for the carbodiimide-immobilized was estimated to be higher as compared to the CuAAC-immobilized, the latter was more effective in preventing bacterial colonization. However, x-ray photoelectron spectroscopy (XPS) revealed gradual desorption of CuAAC-immobilized AMPs, probably due to the insufficient binding strength between the single perfluorocarbon chains with the fluorous surface. To address this issue, a fluoroustagged generation 5 (G5) poly(amido amine) (PAMAM) dendrimer modified with multiple perfluorocarbon chains and terminal alkynes was used to form a stable platform presenting ethynyl groups on the surface. The AMPs immobilized on these platforms via CuAAC reaction prevented the desorption of the AMP on the contact lens while maintaining its vi bactericidal activity against Pseudomonas aeruginosa and non-cytotoxicity on human corneal epithelial cells (HCECs).
机译:提出了使用Cu催化的叠氮化物-炔烃环加成反应(CuCAAC,“点击”反应)对氟薄膜进行的第一个共价官能化。 “可点击的”叠氮基或乙炔基氟载玻片很容易通过基于氟标记的炔烃或叠氮化物与市售全氟化碳涂覆的载玻片之间的强氟相互作用,通过非共价固定来制备。 CuCAAC与叠氮化物或炔烃衍生物的反应很容易在这些“可点击的”载玻片上进行。使用这种方法,可以在水性条件下以微阵列形式将多种生物分子附着在表面上;与直接进行流体固定相比,通过CuAAC反应固定生物分子的明显优势在于它可以在水性缓冲液中进行解决方案,以提高溶解度并避免生物分子变性。重要的是,我们证明了我们的方法还可以改善功能化表面的性能。因此,使用乙炔基封端或氟改性的OEG衍生物,通过两种固定方法制备了低聚乙二醇(OEG)呈递表面。 XPS和细胞粘附结果表明,蛋白质(纤维蛋白原)吸附在氟-OEG修饰的表面上。值得注意的是,通过CuAAC反应制备的OEG表面完全排斥了纤维蛋白原。此外,这些表面可在长达8周的时间内有效防止NIH 3T3成纤维细胞粘附。该方法也适用于在基于氟的隐形眼镜上呈现抗菌肽(AMPs)。具体而言,使用传统的碳二亚胺偶联和CuCAAC反应将具有叠氮标签的AMP LL-25束缚在一起。观察到,尽管估计固定化碳二亚胺的肽密度比固定化CuAAC的肽密度高,但是后者在防止细菌定殖方面更有效。但是,X射线光电子能谱(XPS)显示CuAAC固定的AMP逐渐解吸,这可能是由于单个全氟化碳链与氟表面之间的结合强度不足所致。为了解决此问题,使用经过多全氟化碳链和末端炔烃修饰的含氟标签的第五代(G5)聚(酰胺基胺)(PAMAM)树状聚合物形成表面上存在乙炔基的稳定平台。通过CuAAC反应固定在这些平台上的AMP阻止了AMP在隐形眼镜上的解吸,同时保持了其对铜绿假单胞菌的vi杀菌活性和对人角膜上皮细胞(HCEC)的非细胞毒性。

著录项

  • 作者

    Santos, Catherine Martin.;

  • 作者单位

    University of Houston.;

  • 授予单位 University of Houston.;
  • 学科 Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号