首页> 外文学位 >Optical detection and manipulation of single electron spin coherence in a semiconductor quantum dot.
【24h】

Optical detection and manipulation of single electron spin coherence in a semiconductor quantum dot.

机译:半导体量子点中单电子自旋相干的光学检测和操纵。

获取原文
获取原文并翻译 | 示例

摘要

We demonstrate the ability to sequentially initialize, manipulate, and readout the state of a single electron spin in a quantum dot using all-optical techniques. The GaAs quantum dots are embedded in a diode structure to allow controllable charging of the quantum dots and positioned within a vertical optical cavity to enhance the small single spin signal. First, we demonstrate the detection of a single electron spin in a quantum dot using a time-averaged magnetooptical Kerr rotation measurement at T = 10 K. This technique provides a means to directly probe the spin off-resonance, thus minimally disturbing the system. Next, we have extended this technique into the time domain using pulsed pump and probe lasers, allowing for direct observation of the coherent evolution of a single electron spin-state. The coherent single spin precession in an applied magnetic field reveals the electron g-factor and a transverse spin lifetime of ∼ 10 ns. Additionally, the observed spin dynamics provide a sensitive probe of the local nuclear spin environment. Finally, by applying off-resonant optical pulses, we coherently rotate a single electron spin in a quantum dot up to pi radians on picosecond timescales. Measurements of the spin rotation as a function of laser detuning and intensity confirm that the optical Stark effect is the operative mechanism and the results are well-described by a model including the electron-nuclear spin interaction. Using short tipping pulses, this technique enables one to perform a large number of operations within the coherence time.;As an alternative system for single spin control, few Mn-ion spins in a GaAs quantum well were measured using polarized photoluminescence. A new mechanism for optically addressing and controlling small numbers of magnetic ions in semiconductors is demonstrated without the need for magnetic fields or magnetic materials. The polarized Mn-spins precess in a transverse magnetic field enabling Hanle measurements of the spin lifetimes. The observed Mn-ion spin lifetimes reach promising timescales in the low doping limit, demonstrating that individual magnetic spins in a solid are useful systems for coherent manipulation of spin information.
机译:我们展示了使用全光技术顺序初始化,操纵和读出量子点中单个电子自旋状态的能力。 GaAs量子点嵌入在二极管结构中,以允许量子点的可控充电,并位于垂直光腔内,以增强小的单个自旋信号。首先,我们演示了使用时间平均磁光Kerr旋转测量(在T = 10 K时)检测量子点中的单个电子自旋。该技术提供了一种直接探测自旋离共振的方法,因此对系统的干扰最小。接下来,我们使用脉冲泵浦和探测激光器将该技术扩展到时域,从而可以直接观察单电子自旋态的相干演化。在施加的磁场中,相干的单自旋进动显示出电子g因子和约10 ns的横向自旋寿命。另外,观察到的自旋动力学提供了局部核自旋环境的灵敏探针。最后,通过施加非共振光脉冲,我们在皮秒时标上相干旋转量子点中的单个电子自旋,直至pi弧度。自旋旋转与激光失谐和强度的函数关系的测量证实了光学斯塔克效应是其作用机理,并且该结果通过包含电子-核自旋相互作用的模型得到了很好的描述。使用短的倾斜脉冲,该技术使人们能够在相干时间内执行大量操作。作为单自旋控制的替代系统,使用偏振光致发光测量了GaAs量子阱中很少的Mn离子自旋。在不需要磁场或磁性材料的情况下,展示了一种用于光学寻址和控制半导体中少量磁离子的新机制。极化的Mn自旋可在横向磁场中进动,从而可以进行Hanle测量自旋寿命。在低掺杂极限下,观察到的Mn离子自旋寿命达到了有希望的时间尺度,这表明固体中的各个磁自旋是用于自旋信息的相干操纵的有用系统。

著录项

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Physics Condensed Matter.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 185 p.
  • 总页数 185
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号