首页> 外文学位 >Coherent optical manipulation of electron spin in charged semiconductor quantum dots.
【24h】

Coherent optical manipulation of electron spin in charged semiconductor quantum dots.

机译:电子在带电的半导体量子点中自旋的相干光学操纵。

获取原文
获取原文并翻译 | 示例

摘要

In this work, we study the resonant nonlinear optical response obtained when optical fields are used to excite charged semiconductor quantum dots (QDs). The basic physics of charged excitons (trions) created by optical excitation of charged QDs is of interest from the point of view of optically driven spin based quantum computing (QC).; Stimulated Raman excitation, resonantly enhanced by the optical dipole coupling to the trion state, was used to optically generate electron spin coherence in the ground state of charged QDs. The evolution of the spin coherence was monitored through quantum beats in the phase-sensitively detected four wave mixing signal. The decay of the beats is a measure of the spin coherence time, which was found to be at least an order of magnitude greater than either the trion dipole coherence, or the Raman coherence time between excitons in a single neutral QD. A fascinating outcome of the experiment was the first observation of a contribution to the spin coherence induced by the vacuum field, which is also responsible for spontaneous emission from the trion state, known as spontaneously generated coherence (SGC).; QC demands that coherent optical manipulations should be performed within the spin coherence time. We performed coherent optical control experiments, with a pair of phase-locked pump pulses, that showed the quantum nature of the coherence through interference of different quantum mechanical pathways. We showed both in experiment and theory that we can manipulate the spin coherence on the time scale of the Larmor frequency, as well as on an ultrafast femtosecond time scale, corresponding to the optical frequency of the trion state.; Finally, resonant optical excitation of both the bright and nominally forbidden transitions from a single electron spin in a QD to the trion state were demonstrated. This allows for direct optical access to all the transitions required for optically driven QC with QD electron spins. We used frequency-domain nonlinear spectroscopy measurements on single QD trions to obtain the trion dipole decoherence and decay rates. Further, we demonstrated that the single electron spin coherence could be generated and detected optically, and found that the spin coherence time was significantly greater than in ensemble measurements at the same magnetic field.
机译:在这项工作中,我们研究了当使用光场来激发带电的半导体量子点(QD)时获得的共振非线性光学响应。从基于光驱动的基于自旋的量子计算(QC)的观点来看,由带电的QD的光激发产生的带电的激子(三极子)的基本物理是令人关注的。通过光偶极子耦合到三极子态而共振增强的受激拉曼激发被用来在带电QD的基态中光学产生电子自旋相干。通过在相位敏感检测到的四波混合信号中的量子拍来监测自旋相干的演变。节拍的衰减是自旋相干时间的量度,发现它比单个中性QD中三极偶极子相干或激子之间的拉曼相干时间至少大一个数量级。实验的一个引人入胜的结果是首次观察到真空场对自旋相干的贡献,这也是三重子态自发发射的原因,即自发产生的相干(SGC)。 QC要求应在自旋相干时间内执行相干光学操作。我们用一对锁相泵浦脉冲进行了相干光学控制实验,该实验通过不同量子机械路径的干涉显示了相干的量子性质。我们在实验和理论上都表明,我们可以在拉莫尔频率的时间尺度上以及在超快飞秒时间尺度上控制自旋相干,这与三重态的光学频率相对应。最后,展示了从单电子自旋到QD态到Trion态的明亮和名义上禁止的跃迁的共振光学激发。这允许直接光学访问具有QD电子自旋的光学驱动QC所需的所有转换。我们在单个QD Trion上使用了频域非线性光谱测量,以获得Trion偶极子的相干和衰减率。此外,我们证明了单电子自旋相干可以通过光学方式产生和检测,并且发现自旋相干时间明显大于在相同磁场下的整体测量。

著录项

  • 作者

    Dutt, M. V. Gurudev.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Physics Condensed Matter.; Physics Optics.; Physics Atomic.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 179 p.
  • 总页数 179
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;分子物理学、原子物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号