首页> 外文学位 >Biomechanical analysis of blast-induced traumatic brain injury using multiscale brain modeling.
【24h】

Biomechanical analysis of blast-induced traumatic brain injury using multiscale brain modeling.

机译:使用多尺度脑模型对爆炸诱发的颅脑损伤进行生物力学分析。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, an integrated and mechanized finite element (FE) model is developed for predicting a human brain's primary blast injury (PBI) and for assisting in the design of personal protective human head equipment. Due to the fact that there is no quantitative experimental data on blast-head interactions, several important checkpoints are made before embarking on the blast-brain interaction responses. These checkpoints include: (a) a validated FE human head; (b) a verified free-air blast wave model; and (c) a verified blast-solid interaction model. The developed human head model has the complete anatomical features of the head and the brain. Particular emphasis are given to the brain-skull interface characteristics; the constitutive properties of various components, especially the brain tissue hyper-viscoelastic material behavior; and the level of validation. Prior to blast-head analysis, a flexible and representative air blast model is also developed to simulate the blast environments. With a rolled homogeneous armor (RHA) steel plate embedded into the air blast model, the fluid-structure interaction is examined and validated with the experimental blast studies. The numerical solutions are indicative of the model's potential to predict the free-air blast loading as well as blast-structure interactions under general circumstances. The head model is exposed to different scenarios of blast loading to study the brain responses. The responses (i.e. intracranial pressure, stress and strain) are compared to their respective injury thresholds. Such comparisons examine the applicability of the model and provide insight into the foundations of primary injury under blast loadings. The last section focuses on a multiscale modeling of the brain tissue that incorporates basic micromechanics brain characterization with macroscale brain analysis. An optimization procedure based on genetic algorithms (GAs) is used to identify linear viscoelastic material parameters associated with the axons and extracellular matrix of brain tissue based on the experimental as well as the micromechanical modeling data. New hyperviscoelastic material parameters are extracted for guinea pig brain tissue and human cadaveric brain tissue. Both of these materials are then used in blast modeling and the differences between the responses are shown.
机译:本文提出了一种集成化的机械化有限元(FE)模型,用于预测人脑的原发性爆炸伤害(PBI),并协助设计个人头部保护设备。由于没有关于爆炸-头部相互作用的定量实验数据,因此在着手进行爆炸-大脑相互作用反应之前要进行几个重要的检查。这些检查点包括:(a)经验证的有限元人员头部; (b)经过验证的自由爆炸波模型; (c)验证的爆炸-固体相互作用模型。发达的人体头部模型具有头部和大脑的完整解剖特征。特别强调了脑-颅界面的特性。各种成分的本构特性,尤其是脑组织的超粘弹性物质的行为;和验证级别。在爆破头分析之前,还开发了一种灵活且具有代表性的爆炸模型来模拟爆炸环境。在爆炸模型中嵌入了轧制的均质装甲(RHA)钢板,通过实验爆炸研究检查并验证了流固耦合。数值解表明了模型在一般情况下预测自由空气爆炸载荷以及爆炸与结构相互作用的潜力。头部模型暴露于爆炸载荷的不同情况下,以研究大脑反应。将响应(即颅内压,应力和应变)与它们各自的损伤阈值进行比较。这种比较检查了模型的适用性,并提供了爆炸载荷下原发性损伤的基础的见解。最后一部分着重于大脑组织的多尺度建模,该模型将基本的微力学大脑表征与宏观大脑分析相结合。基于实验和微机械建模数据,基于遗传算法(GAs)的优化程序用于识别与脑组织的轴突和细胞外基质相关的线性粘弹性材料参数。提取了豚鼠脑组织和人尸体脑组织的新的高粘弹性材料参数。然后将这两种材料都用于爆炸建模,并显示了响应之间的差异。

著录项

  • 作者

    Sotudeh Chafi, Mahdi.;

  • 作者单位

    North Dakota State University.;

  • 授予单位 North Dakota State University.;
  • 学科 Engineering Biomedical.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程 ; 机械、仪表工业 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号