首页> 外文学位 >Single cell growth and gene expression dynamics in model organisms.
【24h】

Single cell growth and gene expression dynamics in model organisms.

机译:模型生物中的单细胞生长和基因表达动力学。

获取原文
获取原文并翻译 | 示例

摘要

The developing discipline of synthetic biology attempts to recreate in artificial systems the emergent properties found in natural biology. Progress in this field requires a thorough understanding of the basic cellular functions that underly complex biological networks. Here, we present several studies that use existing and novel methods to probe the dynamic behavior of the model organisms Saccharomyces cerevisiae and Escherichia coli at the single cell level. First, we develop a microfluidic chemostat for monitoring single-cell gene expression within large populations of S. cerevisiae over many cellular generations. Second, we investigate the sources of extrinsic variability in eukaryotic gene expression using a combination of computational modeling and fluorescence data generated from multiple promoter-gene inserts in S. cerevisiae. Third, we use an enhanced version of the microfluidic chemostat to subject a large population of S. cerevisiae to a periodically varying carbon source, uncovering a novel regulatory property of a well-characterized metabolic network. Fourth, we use fluorescence mix-croscopy to acquire long-term volume trajectories for a large population of S. cerevisiae cells and reveal cell cycle dependent variations in protein concentration. Finally, we design and construct a synthetic signaling network in E. coli to investigate the coupling effect of "waiting lines" for enzymatic processing and discover correlated signaling through coupled protein degradation. Together, these studies illustrate the need for new approaches to studying fundamental cellular processes, in order to ultimately advance the goals of synthetic biology.
机译:合成生物学的发展学科试图在人工系统中重现自然生物学中发现的新兴特性。该领域的进展需要对复杂的生物网络下面的基本细胞功能有透彻的了解。在这里,我们提出了一些使用现有方法和新颖方法的研究,以在单个细胞水平上探查酿酒酵母和大肠杆菌的动态行为。首先,我们开发了一种微流控化学恒温器,用于监控许多细胞世代中酿酒酵母大群体内的单细胞基因表达。其次,我们使用计算模型和从酿酒酵母中多个启动子-基因插入片段产生的荧光数据的组合,研究了真核基因表达中外在变异的来源。第三,我们使用增强型的微流控化学恒化器,使大量酿酒酵母受到周期性变化的碳源的影响,从而揭示了代谢良好的新网络的调控特性。第四,我们使用荧光混合显微术来获取大量酿酒酵母细胞的长期体积轨迹,并揭示细胞周期中蛋白质浓度的变化。最后,我们在大肠杆菌中设计和构建了一个合成的信号网络,以研究“等待线”对酶促加工的偶联作用,并通过偶联的蛋白质降解发现相关的信号。总之,这些研究表明需要新的方法来研究基本的细胞过程,以最终推进合成生物学的目标。

著录项

  • 作者

    Cookson, Natalie Anne.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号