首页> 外文学位 >Flexible imaging for capturing depth and controlling field of view and depth of field.
【24h】

Flexible imaging for capturing depth and controlling field of view and depth of field.

机译:灵活的成像功能,可捕获深度并控制视野和景深。

获取原文
获取原文并翻译 | 示例

摘要

Over the past few centuries cameras have greatly evolved to better capture our visual world. However, the fundamental principle has remained the same---the camera obscura. Consequently, though cameras today can capture incredible photographs, they still have certain limitations. For instance, they can capture only 2D scene information. Recent years have seen several efforts to overcome these limitations and extend the capabilities of cameras through the paradigm of computational imaging---capture the scene in a coded fashion, which is then decoded computationally in software. This thesis subscribes to this philosophy. In particular, we present several imaging systems that enable us to overcome limitations of conventional cameras and provide us with flexibility in how we capture scenes.;First, we present a family of imaging systems called radial imaging systems that capture the scene from a large number of viewpoints, instantly, in a single image. These systems consist of a conventional camera looking through a hollow conical mirror whose reflective side is the inside. By varying the parameters of the cone we get a continuous family of imaging systems. We demonstrate the flexibility of this family---different members of this family can be used for different applications. One member is well suited for reconstructing objects with fine geometry such as 3D textures, while another is apt for reconstructing larger objects such as faces. Other members of this family can be used to capture texture maps and estimate the BRDFs of isotropic materials.;We then present an imaging system with a flexible field of view---the size and shape of the field of view can be varied to achieve a desired scene composition in a single image. The proposed system consists of a conventional camera that images the scene reflected in a flexible mirror sheet. By deforming the mirror we can generate a wide and continuous range of smoothly curved mirror shapes, each of which results in a new field of view. This system enables us to realize a wide range of scene-to-image mappings, in contrast to conventional imaging systems that yield a fixed or a fixed set of scene-to-image mappings.;All imaging systems that use curved mirrors (including the ones above) suffer from the problem of defocus due to mirror curvature; due to local curvature effects the entire image is usually not in focus. We use the known mirror shape and camera and lens parameters to numerically compute the spatially varying defocus blur kernel and then explore how we can use spatially varying deconvolution techniques to computationally 'stop-up' the lens---capture all scene elements with sharpness while using larger apertures than what is usually required in curved mirror imaging systems.;Finally, we present an imaging system with flexible depth of field. We propose to translate the image detector along the optical axis during the integration of a single image. We show that by controlling the motion of the detector---its starting position, speed, and acceleration---we can manipulate the depth of field in new and interesting ways. We demonstrate capturing scenes with large depths of field, while using large apertures to maintain high signal-to-noise ratio. We also show how we can capture scenes with discontinuous, tilted or non-planar depths of field.;All the imaging systems presented here subscribe to the philosophy of computational imaging. This approach is particularly attractive as with Moore's law computations become increasingly cheaper, enabling us to push the limits of how cameras can capture scenes.
机译:在过去的几个世纪中,相机已经得到了很大的发展,可以更好地捕捉我们的视觉世界。但是,基本原理保持不变-相机晦涩难懂。因此,尽管当今的相机可以拍摄出令人难以置信的照片,但它们仍然具有一定的局限性。例如,他们只能捕获2D场景信息。近年来,人们为克服这些局限性并通过计算成像范式扩展了相机的功能做出了许多努力,即以编码方式捕获场景,然后通过软件对其进行解码。本论文赞同这一哲学。特别是,我们提出了几种成像系统,这些系统使我们能够克服传统相机的局限性,并为我们捕获场景提供了灵活性。首先,我们提出了一系列称为放射线成像系统的成像系统,它们可以从大量场景中捕获场景。单个图像中的视点集合。这些系统由一台传统的摄像机组成,该摄像机通过一个中空的锥形镜观察,该镜的反射面位于内部。通过改变锥体的参数,我们可以获得连续的成像系统。我们证明了该系列的灵活性-该系列的不同成员可以用于不同的应用程序。一个成员非常适合用于重建具有精细几何图形(例如3D纹理)的对象,而另一成员则适合于重建较大的对象(例如面部)。该家族的其他成员可用于捕获纹理图并估计各向同性材料的BRDF。;然后,我们提出一种具有灵活视场的成像系统-可以改变视场的大小和形状以实现单个图像中所需的场景构图。所提出的系统由传统的照相机组成,该照相机对在柔性镜板上反射的场景成像。通过使反射镜变形,我们可以生成范围广泛且连续的平滑弯曲的反射镜形状,每种形状都会带来新的视野。与产生固定或固定的一组场景到图像映射的常规成像系统相比,该系统使我们能够实现各种场景到图像的映射。所有使用曲面镜的成像系统(包括以上所述)由于镜面弯曲而遭受散焦的问题;由于局部曲率效应,整个图像通常不清晰。我们使用已知的镜面形状以及相机和镜头参数来数值计算空间变化的散焦模糊核,然后探索如何使用空间变化的反卷积技术来计算“停止”镜头-捕获所有场景元素,同时保持清晰度最后,我们提出了一种具有灵活景深的成像系统。我们建议在单个图像积分期间沿光轴平移图像检测器。我们证明了通过控制探测器的运动-探测器的起始位置,速度和加速度-可以以新颖有趣的方式操纵景深。我们演示了使用大光圈保持高信噪比的同时捕获具有大景深的场景。我们还展示了如何捕获具有不连续,倾斜或非平面景深的场景。此处介绍的所有成像系统都遵循计算成像的原理。随着摩尔定律的计算变得越来越便宜,这种方法尤其吸引人,这使我们能够突破相机如何捕获场景的极限。

著录项

  • 作者

    Kuthirummal, Sujit.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术、计算机技术;
  • 关键词

  • 入库时间 2022-08-17 11:38:30

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号