首页> 外文学位 >Cardiac energetics in the isolated heart by NMR spectroscopy and mathematical modeling.
【24h】

Cardiac energetics in the isolated heart by NMR spectroscopy and mathematical modeling.

机译:通过NMR光谱学和数学建模,离体心脏中的心脏能量。

获取原文
获取原文并翻译 | 示例

摘要

The heart is the most metabolically active organ. Several prevalent cardiac diseases, such as heart failure, ischemic and diabetic cardiomyopathy, are associated with abnormal energy metabolism. However, due to the lack of nondestructive methods to quantify metabolic activities and mitochondrial function, an integrative understanding of the mechanisms underlying metabolic dysfunction in diseased heart has been incomplete. Therefore, in the current thesis, we aimed at developing a novel approach that combines magnetic resonance spectroscopy (MRS) technique with system biology for quantitative understanding of metabolic communication between subcellular compartments and mitochondrial function in intact hearts.;A comprehensive multi-domain model of cardiac metabolism that encompasses the malate-aspartate (M-A) shuttle was developed to investigate the metabolic responses of cardiomyocytes to ischemia (Chapter 2). By functionally localizing the M-A shuttle in a subdomain within the cardiomyocytes, model simulations suggested that the decreased shuttle flux during ischemia was due to the redistribution of shuttle-associated metabolites across the mitochondrial membrane. Chapter 3 focused on developing a kinetic analysis method for evaluation of fluxes through major metabolic pathways from dynamic 13C MRS data in intact hearts. Based on the model of Chapter 2, we developed a novel comprehensive model of cardiac metabolism that incorporates the dynamic labeling of major metabolite pools with 13C. By least-square fitting of this model to NMR-measured dynamic 13C-enrichment of glutamate from isolated perfused hearts, the responses of TCA cycle flux and M-A shuttle activity to altered cytosolic redox states were examined. Finally, a dynamic 17O MRS method was developed and then applied to interrogate mitochondrial respiration in isolated perfused hearts in Chapter 4. By using a specially designed closed-loop perfusion system, feasibility and sensitivity of our 17O MRS approach in detecting altered metabolic rate associated with changes in cardiac workload were demonstrated. In combination with kinetic modeling of metabolic H217O production, this high temporal resolution 17O MRS approach has the potential to quantify mitochondrial respiration rate in functional, beating hearts.;In conclusion, the multi-nuclear MRS kinetic analysis methodologies developed in the current thesis provided the opportunity to comprehensively evaluate cardiac energetics under both normal and pathophysiological conditions.
机译:心脏是代谢最活跃的器官。几种常见的心脏病,例如心力衰竭,缺血性和糖尿病性心肌病,与能量代谢异常有关。然而,由于缺乏量化代谢活动和线粒体功能的非破坏性方法,对患病心脏代谢功能障碍的潜在机制的综合理解尚不完整。因此,在本论文中,我们旨在开发一种将磁共振波谱(MRS)技术与系统生物学相结合的新方法,以定量了解完整心脏中亚细胞区室和线粒体功能之间的代谢通讯。开发了涵盖苹果酸-天冬氨酸(MA)穿梭的心脏代谢,以研究心肌细胞对局部缺血的代谢反应(第2章)。通过功能性地将M-A穿梭功能定位在心肌细胞内的一个子域中,模型仿真表明,缺血期间穿梭通量的减少是由于穿梭相关代谢物在线粒体膜上的重新分布所致。第3章着重于开发动力学分析方法,以评估来自完整心脏中动态13C MRS数据的主要代谢途径的通量。基于第2章的模型,我们开发了一种新颖的心脏代谢综合模型,该模型结合了13C对主要代谢物库的动态标记。通过最小二乘拟合该模型,以核磁共振测量的来自离体灌注心脏的谷氨酸的动态13C富集,检查了TCA循环通量和M-A穿梭活性对改变的胞质氧化还原状态的响应。最后,在第4章中,开发了一种动态17O MRS方法,然后将其应用于询问离体灌注心脏的线粒体呼吸。通过使用专门设计的闭环灌注系统,我们的17O MRS方法在检测与代谢相关的代谢率改变中的可行性和敏感性证明了心脏工作量的变化。结合代谢H217O产生的动力学模型,这种高时间分辨率的17O MRS方法具有量化功能性,搏动性心脏中线粒体呼吸速率的潜力。总之,本论文开发的多核MRS动力学分析方法提供了在正常和病理生理条件下全面评估心脏能量的机会。

著录项

  • 作者

    Lu, Ming.;

  • 作者单位

    Case Western Reserve University.;

  • 授予单位 Case Western Reserve University.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号