首页> 外文学位 >A framework for system-level power estimation and optimization of system-on-chip.
【24h】

A framework for system-level power estimation and optimization of system-on-chip.

机译:用于系统级功耗估计和片上系统优化的框架。

获取原文
获取原文并翻译 | 示例

摘要

Minimizing power dissipation is a vital design objective for electrical devices. Various power optimization techniques have been proposed and used to overcome this issue with rapid increases of power. However, it is hard to obtain reliable power saving effects with these techniques at an early design stage, as they are mostly available only at a later stage, at gate level, where a major design change is impossible. In addition, with the shift towards deep sub-micron (DSM) technologies, the increased leakage power and the adoption of power-aware design methodologies have resulted in potentially considerable variations in power consumption under different process, voltage, and temperature (PVT) corners. With all of these causing uncertainty in the predictions of power consumption early in the design stage, it is becoming critical for designers to have credible power estimating frameworks for System-on-Chip (SoC). It is also important for these power models to be usable across various modeling abstractions in an electronic system level (ESL) design flow, in order to guide early design decisions.;In this dissertation, we propose frameworks for power estimation of major components in SoC, and show the feasibility of our methodologies with several case studies. Our unified power modeling methodology for the creation of power models at multiple granularity levels can be quickly mapped to any ESL design flow. The generated models range from very high-level, that can be used in transaction level models (TLM), to extremely detailed, cycle-accurate micro-architectural models. We also propose a methodology that can allow designers to explore the impact of using fine-grained power saving techniques, such as automatic/manual clock gating and operand isolation, at the system level. Furthermore, with our methodology, we can investigate the impact of PVT corners on power consumption at the system level. Given a target technology library, we show how it is possible to scale vertically and abstract the PVT variability at the system level, allowing characterization of the PVT-aware design space early in the design flow. These models provide a designer significant flexibility to trade off estimation accuracy with estimation/simulation effort. Our methodology allows the exploration of different synthesis "switches," and their impact on power efficiently.
机译:最小化功耗是电气设备的重要设计目标。已经提出了各种功率优化技术,并且使用各种功率优化技术来克服功率快速增加的问题。但是,在早期设计阶段很难用这些技术获得可靠的省电效果,因为这些技术大多数只能在后期进行,无法进行重大设计变更时,才可以在门级使用。此外,随着向深亚微米(DSM)技术的转变,越来越多的泄漏功率和采用功耗意识的设计方法导致了在不同工艺,电压和温度(PVT)角下功耗的潜在显着变化。 。由于所有这些因素在设计初期就造成功耗预测的不确定性,因此对于设计人员来说,拥有可靠的片上系统(SoC)功耗估计框架变得至关重要。对于这些功率模型来说,在电子系统级(ESL)设计流程中的各种建模抽象中使用也很重要,以便指导早期的设计决策。本文提出了用于SoC中主要组件功率估计的框架。 ,并通过一些案例研究证明了我们方法的可行性。我们用于创建多个粒度级别的功率模型的统一功率建模方法可以快速映射到任何ESL设计流程。生成的模型从可以在事务级别模型(TLM)中使用的非常高级的模型到非常详细,周期精确的微体系结构模型。我们还提出了一种方法,可以使设计人员探索在系统级别使用细粒度节能技术(如自动/手动时钟门控和操作数隔离)的影响。此外,使用我们的方法,我们可以研究PVT角落对系统级别功耗的影响。给定目标技术库,我们将展示如何在系统级别上垂直缩放和抽象PVT可变性,从而在设计流程的早期就可以表征可识别PVT的设计空间。这些模型为设计人员提供了极大的灵活性,可以在估算精度与估算/仿真工作之间进行权衡。我们的方法允许探索不同的合成“开关”及其对功率的有效影响。

著录项

  • 作者

    Park, Young-Hwan.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 174 p.
  • 总页数 174
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号