首页> 外文学位 >Design and applications of frequency tunable and reconfigurable metamaterials.
【24h】

Design and applications of frequency tunable and reconfigurable metamaterials.

机译:频率可调和可重构超材料的设计和应用。

获取原文
获取原文并翻译 | 示例

摘要

A "metamaterial" by its widely accepted definition is an artificially engineered structure that gains its material properties from its structure as opposed to its intrinsic material composition. The field of metamaterials has gained much attention within the scientific community over the past decade. With continuing advances and discoveries leading the way to practical applications, metamaterials have earned the attention of technology based corporations and defense agencies interested in their use for next generation devices. With the fundamental physics developed and well understood in some areas, current research efforts are driven by the demand for practical applications, with a famous example being the well-known microwave "invisibility cloak." Gaining exotic electromagnetic properties from their structure as opposed to their intrinsic material composition, metamaterials can be engineered to achieve tailored responses not available using natural materials. With typical designs incorporating resonant and dispersive elements much smaller than the operating wavelength, a homogenization scheme is possible, which leads to the meaningful interpretation of effective refractive index, and hence electric permittivity and magnetic permeability. Most metamaterials consist of scattering element arrays embedded in a host matrix. The scattering elements are typically identical, and the electromagnetic properties of the medium can be inferred from the properties of the unit cell. This convenience allows the designer to engineer the effective electromagnetic parameters of the medium by modifying the size, shape, and composition of the unit cell. An important rule when designing a metamaterial is to keep the size and periodicity of the scattering elements significantly smaller than the operating wavelength (lambda0=10 or smaller), as this allows for meaningful interpretation of the material's bulk properties based on the behavior of the unit cell.;This dissertation summarizes several key projects related to my research efforts in metamaterials. The main focus of this dissertation is to develop practical approaches to frequency tunable and reconfigurable metamaterials. Chapter one serves as a background and introduction to the field of metamaterials. The purpose of chapters two, three and four is to develop different methods to realize tunable meta-materials -- a broad class of controllable artificially engineered metamaterials. The second chapter develops an approach to characterizing metamaterials loaded with RF MEMS switches. The third chapter examines the effects of loading metamaterial elements with varactor diodes and tunable ferroelectric thin film capacitors (BST) for external tuning of the effective medium parameters, and chapter four develops a more advanced method to control the response of metamaterials using a digitally addressable control network. The content of these chapters leads up to an interesting application featured in chapter five -- a reconfigurable frequency selective surface utilizing tunable and digitally addressable tunable metamaterials. The sixth and final chapter summarizes the dissertation and offers suggestions for future work in tunable and reconfigurable metamaterials. It is my hope that this dissertation will provide the foundation and motivation for new researchers in the field of metmaterials. I am confident that the reader will gain encouragement from this work with the understanding that very interesting and novel practical devices can be created using metamaterials. May this work be of aid and motivation to their research pursuits.
机译:按照其广泛接受的定义,“超材料”是一种人造工程结构,它从其结构中获得了与其固有的材料成分相反的材料特性。在过去的十年中,超材料领域在科学界引起了广泛关注。随着不断的进步和发现引领着实际应用的发展,超材料已经赢得了对将其用于下一代设备的技术型公司和国防机构的关注。随着基本物理学的发展和在某些领域的广泛理解,当前的研究工作是由对实际应用的需求驱动的,其中一个著名的例子就是著名的微波“隐形斗篷”。通过从其结构中获得异乎寻常的电磁特性,而不是其固有的材料成分,可以对超材料进行工程设计,以实现使用天然材料无法获得的量身定制的响应。使用包含比工作波长小得多的谐振和色散元件的典型设计,可以实现均质化方案,这可以有效解释有效折射率,进而解释介电常数和磁导率。大多数超材料由嵌入主体基质中的散射元素阵列组成。散射元件通常是相同的,并且可以从单位晶胞的特性推断出介质的电磁特性。这种便利性使设计人员可以通过修改单位单元的尺寸,形状和组成来设计介质的有效电磁参数。设计超材料时的重要规则是保持散射元素的大小和周期性显着小于工作波长(λ0= 10或更小),因为这可以根据单元的行为来有意义地解释材料的整体性质。本文总结了与我在超材料方面的研究工作有关的几个关键项目。本文的主要重点是为频率可调谐和可重构超材料开发实用的方法。第一章是超材料领域的背景知识和介绍。第二章,第三章和第四章的目的是开发实现可调谐超材料的不同方法,可调谐超材料是一类可控的人工工程超材料。第二章提出了表征载有RF MEMS开关的超材料的方法。第三章研究了用变容二极管和可调谐铁电薄膜电容器(BST)加载超材料对外部介质有效参数的影响,第四章提出了一种更高级的方法来使用数字可寻址控制来控制超材料的响应。网络。这些章节的内容引出了第五章中一个有趣的应用程序-利用可调谐和可数字寻址的可调谐超材料的可重配置频率选择表面。第六章也是最后一章对论文进行了总结,并为可调谐和可重构超材料的未来工作提供了建议。我希望本文能为金属材料领域的新研究人员提供基础和动力。我相信读者会因使用超材料可以创建非常有趣且新颖的实用设备而受到鼓舞。愿这项工作对他们的研究追求有所帮助和动力。

著录项

  • 作者

    Hand, Thomas Henry.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号