首页> 外文学位 >In situ optically trapped probing system for molecular recognition and localization.
【24h】

In situ optically trapped probing system for molecular recognition and localization.

机译:用于分子识别和定位的原位光阱探测系统。

获取原文
获取原文并翻译 | 示例

摘要

This research dissertation presents design and implementation of a complete multi-functional optically-trapped probing system for in-situ molecular recognition and localization. This complete system consists of three-axis steering system, dual-trap manipulation, and dual-laser detection with advanced implementation of automated sample-probe engagement by high-speed confocal imaging and real-time calibration and force probing.;The development of the optically-trapped probing system was based on the knowledge and expertise acquired from two bench-test systems. The first system was built with a three-axis lens translation system to manually steer the trapping laser. The second system successfully implemented the back-focal-plane (BFP) interferometry for position measurement to complete the system with the capabilities of three-dimensional (3D) manipulation, position detection, and force sensing with a stationary optical trap. The integration mechanism of rapid three-axis laser steering is able to achieve over 50 kHz bandwidth laterally with a two-axis acousto-optic deflector (AOD) and over 3 kHz vertically with a deformable mirror (DM) by model cancellation. Two trapping lasers and one measurement laser were well aligned to achieve dual-trap manipulation and dual-laser measurement for relative and absolute displacement of the probe.;Real-time in situ calibration for measurement sensitivity and trapping stiffness was illustrated based on the weighted recursive least square (WRLS) algorithm with the system parameters for time-varying optical trapping system, such as the state transition coefficient, recursively estimated according to the probe's motion. This algorithm has been successfully applied to calibrate the measurement sensitivity and trapping stiffness and is applicable for probe's local temperature estimation with slight modification to the algorithm. Two experiments were conducted to demonstrate the capability of this realtime calibration algorithm in response to the variation of trapping laser power and environmental temperature.;High-speed confocal imaging technology was intensively investigated and an application-oriented project for automated sample-probe engagement was collaboratively implemented with Dr Peng Cheng. The confocal-imaging based interface is capable of two-dimensional (2D) dynamic tracking and 3D sample-probe engagement with information linked with the optically trapped probing system.;Quasi-static and real-time force probing were encapsulated to study specific/nonspecific interactions between the probe functionalized with M2-antibodies and the cell samples labeled by Flag epitode. The quasi-static force sensing was employed to probe this interaction while the probe and sample approached stepwisely. Specific interaction and non-specific interaction were detected with distinctive results. The real-time force sensing was applied to investigate the process in the continuous trace and retrace with respect to the probe. Experimental results for a Human Embryonic Kidney (HEK) 293 live cell provided intrinsic information of the system dynamics for specific interaction. Position-clamped real-time force probing was successfully employed for 3D force mapping of Flag-tagged beads and HEK 293 live cells expressed with Flag-NIS-eGFP. A few concerns related to practical biological experiments were illustrated.;The main contribution of this research is design and development of the unique multi-functional optically-trapped probing system for in-situ biological applications in quasi-static and real-time force sensing for specific interactions and 3D force mapping for molecular localization.
机译:本研究论文提出了用于原位分子识别和定位的完整的多功能光学陷阱探测系统的设计与实现。这个完整的系统包括三轴转向系统,双阱操纵和双激光检测,并通过高速共聚焦成像,实时校准和力探测的先进实现自动执行样品探针接合。光学陷波探测系统基于从两个基准测试系统获得的知识和专长。第一个系统是使用三轴透镜平移系统构建的,用于手动控制诱捕激光器。第二个系统成功实现了用于位置测量的后焦平面(BFP)干涉测量,以完成具有三维(3D)操纵,位置检测和具有固定光阱的力感测功能的系统。通过三轴声光偏转器(AOD),横向三轴激光转向的集成机制能够通过模型消除在横向上实现超过50 kHz的带宽,而通过可变形反射镜(DM)在垂直方向上实现超过3 kHz的带宽。正确对准了两个捕获激光器和一个测量激光器,以实现双阱操纵和双激光测量,以测量探头的相对和绝对位移。;基于加权递归的方法对测量灵敏度和捕获刚度进行了实时原位校准随时间变化的光学陷波系统的系统参数(例如状态转移系数)的最小二乘(WRLS)算法根据探测器的运动进行递归估计。该算法已成功应用于校准测量灵敏度和捕集刚度,并且在对该算法稍加修改的情况下也可用于探针的局部温度估计。进行了两个实验,以证明该实时校准算法对捕获激光功率和环境温度变化的响应能力。;对高速共聚焦成像技术进行了深入研究,并合作开展了一个面向应用的自动化样品探针接合项目由彭鹏博士实施。基于共聚焦成像的界面能够进行二维(2D)动态跟踪和3D样本探针接合,并与与光学陷阱探测系统链接的信息相关联;封装了准静态和实时力探测以研究特定/非特定对象M2抗体功能化的探针与Flag标记的细胞样品之间的相互作用。当探针和样品逐步接近时,采用准静态力感测来探测这种相互作用。检测到特异性相互作用和非特异性相互作用具有明显的结果。应用实时力感测来研究相对于探针的连续跟踪和回溯过程。人类胚胎肾(HEK)293活细胞的实验结果为特定相互作用提供了系统动力学的内在信息。钳位式实时力探测已成功用于Flag-NIS-eGFP表达的Flag标记珠和HEK 293活细胞的3D力作图。阐明了与实际生物学实验有关的一些问题。这项研究的主要贡献是设计和开发了独特的多功能光学陷阱探测系统,用于准静态和实时力感测的原位生物应用。分子相互作用的特定相互作用和3D力图。

著录项

  • 作者

    Wan, Jingfang.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号