首页> 外文学位 >Selective heteroepitaxial growth of germanium for monolithic integration of MOSFETs and optical devices.
【24h】

Selective heteroepitaxial growth of germanium for monolithic integration of MOSFETs and optical devices.

机译:锗的选择性异质外延生长,用于MOSFET和光学器件的单片集成。

获取原文
获取原文并翻译 | 示例

摘要

As Si bulk CMOS devices approach their fundamental scaling limit, diverse research is being done to introduce novel structures and materials. High carrier mobility and possible monolithic integration with Si based devices have prompted renewed interest in Ge based devices. For optical applications, it was challenging to make photodetectors operate in 1.3-1.55microm wavelength range with Si, due to its relatively large indirect (1.1eV) and direct (3.4eV) bandgaps. However, Ge's smaller direct band gap (0.8eV) corresponding to ∼1.55microm in wavelength and possible monolithic integration with Si CMOS technology make Ge a strong candidate for photodetectors.;In the first part of the thesis, selective Ge heteroepitaxial growth on Si and in-situ doping technique for n+/p junction are discussed. Surface roughness of heteroepitaxially gorwn Ge on Si is considerably reduced by high temperature hydrogen annealing. Ge growth and hydrogen annealing steps are repeated until desired epi layer thickness is reached. High quality Ge film (minimal dislocation (1x107cm-2) and very smooth surface (0.65nm (RMS)) is achieved selectively on Si using SiO2 window. For abrupt and box shaped n+/p junction in Ge, in-situ phosphorus doping using PH3 is employed during the epitaxial growth. Temperature dependency of the dopant activation was investigated associated with the shallower and abrupt junction formation. Novel n+/p diodes show better characteristics (on/off ratio and on current density) compared with conventional ion-implanted junction.;High performance Ge MOSFETs and optic devices fabricated using selective Ge heteroepitaxial growth on Si are discussed in the second part of the thesis. For n-MOSFETs, in-situ doping technique is used to form source and drain with very low series resistance and shallow junctions. p-MOSFETs are fabricated with high-k/metal gate stack. Results show the highest electron mobility ever reported on (100) Ge n-MOSFETs and ∼80% enhancement of hole mobility over Si universal mobility for p-MOSFETs. Normal incidence p-i-n photodiodes on selectively grown Ge are also demonstrated. Enhanced efficiency in the near infrared regime and the absorption edge shifting to longer wavelength is achieved due to residual tensile strain. Measured responsivities are promising towards monolithically integrated on-chip optical links and in telecommunications.;In this study, we demonstrate high performance Ge MOSFETs and optical devices which can be monolithically integrated to Si technology, by employing novel Ge heteroepitaxial growth and in-situ dopoing technique.
机译:随着Si体CMOS器件接近其基本尺寸极限,正在进行各种研究以引入新颖的结构和材料。较高的载流子迁移率以及与基于Si的器件可能的单片集成促使人们对基于Ge的器件产生了新的兴趣。对于光学应用,由于其相对较大的间接(1.1eV)和直接(3.4eV)的带隙,使光电探测器在1.3-1.55μm的波长范围内运行具有Si具有挑战性。然而,Ge较小的直接带隙(0.8eV)对应于约1.55微米的波长,并且可能与Si CMOS技术进行单片集成,使Ge成为光电探测器的强大候选者。讨论了n + / p结的原位掺杂技术。通过高温氢退火,大大降低了Si上异质外延晶粒的Ge的表面粗糙度。重复进行锗生长和氢退火步骤,直到达到所需的外延层厚度。使用SiO2窗口选择性地在Si上获得高质量的Ge膜(最小位错(1x107cm-2)和非常光滑的表面(0.65nm(RMS))。对于Ge中的突变形和盒形n + / p结,使用原位磷掺杂在外延生长过程中使用了PH3,研究了掺杂剂激活的温度依赖性与较浅和陡峭的结形成有关,与传统的离子注入结相比,新型n + / p二极管具有更好的特性(开/关比和电流密度)论文的第二部分讨论了使用选择性锗异质外延生长在硅上制造的高性能锗金属氧化物半导体场效应晶体管和光学器件,对于n型金属氧化物半导体场效应晶体管,采用原位掺杂技术以极低的串联电阻形成源极和漏极。使用高k /金属栅叠层制造p-MOSFET,结果表明,在(100)Ge n-MOSFET上,电子迁移率最高,与Si通用钼相比,空穴迁移率提高了约80% p-MOSFET的能力。还证明了在选择性生长的Ge上的法向入射p-i-n光电二极管。由于残留的拉伸应变,在近红外区域的效率得到了提高,吸收边缘转移到了更长的波长。测得的响应率有望用于单片集成的片上光链路和电信中;在这项研究中,我们演示了通过采用新颖的Ge异质外延生长和原位掺杂技术,可以将单片集成到Si技术的高性能Ge MOSFET和光学器件技术。

著录项

  • 作者

    Yu, Hyun-Yong.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号