首页> 外文学位 >Knowledge-based modeling of RNA three-dimensional structure.
【24h】

Knowledge-based modeling of RNA three-dimensional structure.

机译:基于知识的RNA三维结构建模。

获取原文
获取原文并翻译 | 示例

摘要

RNA's unique ability to act as both a messenger of genetic information (mRNA) and carry out complex chemical reactions in the cell distinguishes it from other biological polymers. By adopting complex three-dimensional (3D) structures, RNA molecules are able to perform functions including catalysis and regulation of transcription and translation. Understanding the functions of these molecules depends critically on knowing their structure. However, creating 3D structural models of RNA remains a significant challenge. In this work, I present two methods that apply an informatics approach to this problem, along with applications of these methods to RNA molecules.;The second method, Coarse to Atomic (C2A), uses geometric information in known RNA 3D structures to add full atomic resolution to coarse grain structural models, such as the ones generated by NAST. We use the existing physic-based molecular dynamics engine GROMACS to minimize the full atomic structures and ensure their chemical reasonability. The resulting full atomic structures remain within 1A of the coarse grain template used as input and can be used as starting structures for physics-based modeling and dynamics methods.;In this dissertation, we demonstrate several applications of these methods. First, we modeled RNA folding intermediates and pathways. RNA molecules form their 3D structures through complex folding pathways that include intermediate conformations, some of which last long enough to be considered trapped states. We used NAST to model RNA folding pathways and intermediates, including such "trapped" states.;By pipelining NAST and C2A, we have created an automated system for knowledge-based prediction of full atomic 3D structures. This method requires no modeling experience from the user and only limited information about the molecule, making possible the large-scale prediction of all RNA molecules with predicted secondary structure. We applied this pipeline first to 95 RNA molecules with known structures by constraining only the secondary structure. Finally, we applied the pipeline to size predicted secondary structure for three experimentally observed functional states of a single aptamer primary sequence and observed the effects of the various secondary structures on the possible 3D structures.;The first method, the Nucleic Acid Simulation Tool (NAST), builds low-resolution 3D structure predictions from limited information about the molecule. NAST uses a one-point-per-residue simplification of RNA structure and statistics of geometries observed in known RNA 3D structures to reduce the computational complexity of the problem and generate a large ensemble of solutions in a reasonable amount of time. Starting with the primary sequence and secondary structure prediction, we use this automated tool to build coarse grain models of several RNA molecules and compare them to their known crystal structures. We also use NAST to combine information from different sources, such as partial crystal structures and hand-made models built by modeling experts.
机译:RNA具有独特的能力,既可以充当遗传信息的信使(mRNA),又可以在细胞中进行复杂的化学反应,从而使其不同于其他生物聚合物。通过采用复杂的三维(3D)结构,RNA分子能够执行包括催化以及转录和翻译调控的功能。了解这些分子的功能主要取决于了解它们的结构。但是,创建RNA的3D结构模型仍然是一项重大挑战。在这项工作中,我提出了两种将信息学方法应用于此问题的方法,以及将这些方法应用于RNA分子的方法;第二种方法,即粗原子(C2A),使用已知RNA 3D结构中的几何信息来添加完整的粗晶粒结构模型(例如NAST生成的模型)的原子分辨率。我们使用现有的基于物理的分子动力学引擎GROMACS来最小化完整的原子结构并确保其化学合理性。得到的完整原子结构保持在粗粒模板的1A范围内,可以用作输入,并且可以用作基于物理的建模和动力学方法的起始结构。在本论文中,我们演示了这些方法的几种应用。首先,我们对RNA折叠中间体和途径进行了建模。 RNA分子通过复杂的折叠途径形成3D结构,这些折叠途径包括中间构象,其中一些构象持续的时间足以被认为是被捕获的状态。我们使用NAST来建模RNA折叠途径和中间体,包括此类“捕获”状态。通过流水化NAST和C2A,我们创建了一个自动化系统,用于基于知识的全原子3D结构预测。该方法不需要用户建模经验,只需要有关分子的有限信息,就可以对具有预测二级结构的所有RNA分子进行大规模预测。通过仅限制二级结构,我们首先将此管道应用于具有已知结构的95个RNA分子。最后,我们将管道应用于单个适体一级序列的三个实验观察到的功能状态的大小预测的二级结构,并观察了各种二级结构对可能的3D结构的影响。;第一种方法是核酸模拟工具(NAST) ),从有关分子的有限信息中建立低分辨率3D结构预测。 NAST使用RNA结构的每个残基简化和在已知RNA 3D结构中观察到的几何统计信息来减少问题的计算复杂性,并在合理的时间内生成大量的解决方案。从一级序列和二级结构预测开始,我们使用此自动化工具建立几个RNA分子的粗粒模型,并将其与已知的晶体结构进行比较。我们还使用NAST组合来自不同来源的信息,例如部分晶体结构和建模专家建立的手工模型。

著录项

  • 作者

    Jonikas, Magdalena Anna.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Biomedical.;Biology Bioinformatics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号