首页> 外文学位 >Convertisseur analogique-numerique neuromimetique de basse consommation d'energie pour les biocapteurs.
【24h】

Convertisseur analogique-numerique neuromimetique de basse consommation d'energie pour les biocapteurs.

机译:用于生物传感器的低能耗神经模拟模数转换器。

获取原文
获取原文并翻译 | 示例

摘要

Analog-to-digital converters (ADC) play a major role in electronic circuits particularly in implementing biosensors. Various architectures for ADCs are differentiated by parameters such as; (i) speed of operation, (ii) precision, and (iii) energy consumption. Although the research domain related to ADCs is still very active, the state-of-the-art low-power designs do not have the needed low power consumption of nanowatts. Our objective aims to design and implement ADCs dedicated to realize sensors with low power consumption. They could be used with implantable sensors and Near-Infrared Spectrometry (NIRS) which is used to measure the brain activity of patients at the cortex level. The cited wearable NIRS biomedical system requires ADCs with particular specifications such as: (i) low power dissipation in nanowatt range for long-last operation necessary for multichannel systems, (ii) small area to be integrated in a system-on-chip (SoC) devices, (iii) medium resolution of 7 to 8 bits, and (iv) good linearity (DNL ≤ 0.5 LSB and INL ≤ 0.5 LSB) to reproduce the input signal in a reliable binary format.;We propose a neuromimetic ADC based on [R.Raut and Zheng (2005)], so called Neuron Cell ADC (NC-ADC). It comprises the morphology and the bioelectric properties of neurons. In particular, the architecture inherits the electrically excitable nature of neurons, and their primary function to transmit and spread the nerve pulses with the same amplitude or actions potentials (APs). The front-end of the proposed structure operates on the same principles as the classical dual-slope integrating ADC. However, the use of back-end digitization step realized by mostly digital circuitries differentiate it from other counterparts which are commonly implemented using either amplifiers or amplifier-based comparators. The proposed design is implemented using TSMC 0.18mum CMOS standard process with 1.5V supply voltage. It consumes only a few hundred nanowatts (486nW) at a sampling frequency of 500 kS/s for an input current of 8 muA, which equals half of the full-scale range of our ADC. Furthermore, the new ADC structure presents a maximum differential non-linearity (DNL) and a maximum integral non-linearity (INL) of less than 0.16 LSB and 0.41 LSB, respectively.;The proposed architecture inspired by physiological neuron mainly consists of the following three modules: (1) Generator of constant amplitude pulses, where their number is proportional to an input sufficient current (greater than 100 nA). This module is called neuron cell due to its similarities to a neuron. It transmits information by generating the actions potentials (APs). The implementation of this module is based on the mathematical model of Hodgkin-Huxley which describes the electrical behavior of a physiologic neuron; (2) Systolic asynchronous counter of APs, which provides 8-bit quantized value corresponding to the input current; (3) Calibration circuit operating as a charge-pump to improve the integral non-linearity of the NC-ADC.;The choice of adequate architecture considerably relies on the nature of the application. Successive approximation (SA) ADCs are reported to be good candidates for our application considering their minimal requirement to active analog circuitries. However, for the sampling rates lower than 100 kS/s, they are remarkably constrained by the comparator offset, the DAC linearity and the overall power consumption. Therefore, these effects have significant impact on their performance.
机译:模数转换器(ADC)在电子电路中起着重要作用,尤其是在实现生物传感器方面。 ADC的各种体系结构通过以下参数来区分: (i)运行速度,(ii)精度,(iii)能耗。尽管与ADC相关的研究领域仍然非常活跃,但最新的低功耗设计并未具有所需的纳瓦低功耗。我们的目标是设计和实现专用于实现低功耗传感器的ADC。它们可与植入式传感器和近红外光谱仪(NIRS)配合使用,后者可在皮质水平上测量患者的大脑活动。引用的可穿戴式NIRS生物医学系统需要具有以下特定规格的ADC,例如:(i)多通道系统所需的长效运行的纳瓦级功耗低,(ii)小面积集成在片上系统(SoC)中)设备,(iii)7至8位的中等分辨率,以及(iv)良好的线性度(DNL≤0.5 LSB和INL≤0.5 LSB)以可靠的二进制格式再现输入信号。 [R. Raut and Zheng(2005)],所谓的神经元细胞ADC(NC-ADC)。它包括神经元的形态和生物电特性。特别是,该架构继承了神经元的电兴奋性,并继承了其以相同幅度或动作电位(AP)传输和传播神经脉冲的主要功能。拟议结构的前端采用与经典双斜率积分ADC相同的原理进行工作。然而,大多数数字电路实现的后端数字化步骤的使用将其与通常使用放大器或基于放大器的比较器实现的其他方法区别开来。拟议的设计使用TSMC 0.18mum CMOS标准工艺和1.5V电源电压实现。对于8μA的输入电流,它在500 kS / s的采样频率下仅消耗几百纳瓦(486nW),这相当于我们ADC满量程范围的一半。此外,新的ADC结构的最大差分非线性(DNL)和最大积分非线性(INL)分别小于0.16 LSB和0.41 LSB .;受到生理神经元启发的拟议架构主要包括以下内容三个模块:(1)恒定振幅脉冲发生器,其数量与输入的足够电流(大于100 nA)成比例。由于其与神经元的相似性,该模块被称为神经元细胞。它通过生成动作电位(AP)来传输信息。该模块的实现基于Hodgkin-Huxley的数学模型,该模型描述了生理神经元的电行为。 (2)AP的脉动异步计数器,提供对应于输入电流的8位量化值; (3)标定电路作为电荷泵工作,以改善NC-ADC的积分非线性;适当架构的选择在很大程度上取决于应用的性质。考虑到对有源模拟电路的最低要求,据称逐次逼近(SA)ADC是我们应用的良好选择。但是,对于低于100 kS / s的采样率,它们受到比较器失调,DAC线性度和总功耗的显着限制。因此,这些影响对其性能有重大影响。

著录项

  • 作者

    Ait Yakoub, My El Mustapha.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 M.Sc.A.
  • 年度 2009
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号