首页> 外文学位 >Nitrogen- and carbon-doped titanium dioxide thin films for solar hydrogen generation.
【24h】

Nitrogen- and carbon-doped titanium dioxide thin films for solar hydrogen generation.

机译:氮和碳掺杂的二氧化钛薄膜,用于产生太阳能氢。

获取原文
获取原文并翻译 | 示例

摘要

Photoelectrochemical cells (PECs) are integrated devices that split water using only clean power from the sun, thus producing clean hydrogen fuel with no harmful carbon emissions. The search is on for optimal photoanode materials in PECs. Desired properties include adequate supply, non-toxicity, stability in aqueous solution, ability to split water, and ability to absorb most of the solar spectrum. Titanium dioxide satisfies all but this last criterion with a bandgap near 3 eV, only the ultraviolet (UV) range of the spectrum may be used. This thesis reports on attempts to improve the visible light activity of TiO2 by doping with the nonmetals nitrogen and carbon, in order to lower effective bandgap. We have synthesized sets of N- and C-containing TiO2 via a simple, easily controlled physical vapor deposition (PVD) process known as pulsed laser deposition (PLD). The dopants were introduced by means of a carrier gas: either nitrogen or methane. Atomic concentrations of dopant were found via X-ray photoelectron spectroscopy (XPS) to range from 0-4%. Pure TiO2 deposits in polycrystalline anatase form at 600°C nitrogen-doped films were also anatase, while carbon incorporation caused a shift to mixed anatase/rutile character. XPS scans showed changes in electronic structure with increased dopant concentration. In the case of nitrogen, a distinct Ti-N peak appeared, indicating N atoms substituting for O. Carbon-region scans only showed a Ti-C peak at high carbon concentrations. Valence band scans of both C-TiO2 and N-TiO2 showed distinct doping states developing just above the valence band. Nitrogen proved more adept at improving visible light activity with a quantum efficiency peak near 460 nm, and a UV-Visible absorption edge at 510 nm. No such visible light activity resulted from carbon-doping. It is theorized that the carbon states are too deep within the bandgap to significantly increase visible light activity, unlike nitrogen 1s states, which successfully overlap with valence band O2p states.
机译:光电化学电池(PEC)是集成设备,仅使用来自太阳的清洁能源就可以将水分解,从而生产出无有害碳排放的清洁氢燃料。正在寻找PEC中的最佳光电阳极材料。所需的特性包括充足的供应,无毒,在水溶液中具有稳定性,分解水的能力以及吸收大部分太阳光谱的能力。二氧化钛满足所有条件,但最后一个标准满足3 eV附近的带隙,因此只能使用光谱的紫外(UV)范围。本论文报道了通过掺杂非金属氮和碳来提高TiO2可见光活性以降低有效带隙的尝试。我们通过称为脉冲激光沉积(PLD)的简单,易于控制的物理气相沉积(PVD)工艺合成了含N和C的TiO2。借助于载气:氮或甲烷引入掺杂剂。通过X射线光电子能谱(XPS)发现掺杂剂的原子浓度为0-4%。在600°C的氮掺杂薄膜上,多晶锐钛矿形式的纯TiO2沉积物也是锐钛矿,而碳的掺入导致混合锐钛矿/金红石特性的转变。 XPS扫描显示,随着掺杂剂浓度的增加,电子结构发生了变化。在氮的情况下,出现了一个明显的Ti-N峰,表明有N个原子取代了O。碳区扫描仅在高碳浓度下显示了Ti-C峰。 C-TiO2和N-TiO2的价带扫描显示恰好在价带上方发展出不同的掺杂态。氮被证明更擅长于改善可见光的活性,其量子效率峰值接近460 nm,并且在510 nm具有紫外可见吸收边缘。碳掺杂不会导致这种可见光活性。从理论上讲,与能隙O2p态成功重叠的氮1s态不同,带隙内的碳态太深而无法显着增加可见光的活性。

著录项

  • 作者

    Schulz, Meghan E.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Chemistry Analytical.Engineering Materials Science.Energy.Physics Condensed Matter.
  • 学位 M.M.S.E.
  • 年度 2009
  • 页码 94 p.
  • 总页数 94
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号