首页> 外文学位 >Exact solution of Bayes and minimax change-detection problems.
【24h】

Exact solution of Bayes and minimax change-detection problems.

机译:贝叶斯和minimax变化检测问题的精确解决方案。

获取原文
获取原文并翻译 | 示例

摘要

The challenge of detecting a change in the distribution of data is a sequential decision problem that is relevant to many engineering solutions, including quality control and machine and process monitoring. This dissertation develops techniques for exact solution of change-detection problems with discrete time and discrete observations.;Change-detection problems are classified as Bayes or minimax based on the availability of information on the change-time distribution. A Bayes optimal solution uses prior information about the distribution of the change time to minimize the expected cost, whereas a minimax optimal solution minimizes the cost under the worst-case change-time distribution. Both types of problems are addressed.;The most important result of the dissertation is the development of a polynomial-time algorithm for the solution of important classes of Markov Bayes change-detection problems. Existing techniques for epsilon-exact solution of partially observable Markov decision processes have complexity exponential in the number of observation symbols. A new algorithm, called constellation induction, exploits the concavity and Lipschitz continuity of the value function, and has complexity polynomial in the number of observation symbols. It is shown that change-detection problems with a geometric change-time distribution and identically- and independently-distributed observations before and after the change are solvable in polynomial time. Also, change-detection problems on hidden Markov models with a fixed number of recurrent states are solvable in polynomial time. A detailed implementation and analysis of the constellation-induction algorithm are provided.;Exact solution methods are also established for several types of minimax change-detection problems. Finite-horizon problems with arbitrary observation distributions are modeled as extensive-form games and solved using linear programs. Infinite-horizon problems with linear penalty for detection delay and identically- and independently-distributed observations can be solved in polynomial time via epsilon-optimal parameterization of a cumulative-sum procedure.;Finally, the properties of policies for change-detection problems are described and analyzed. Simple classes of formal languages are shown to be sufficient for epsilon-exact solution of change-detection problems, and methods for finding minimally sized policy representations are described.
机译:检测数据分布变化的挑战是与许多工程解决方案(包括质量控制以及机器和过程监控)相关的顺序决策问题。本文研究了离散时间和离散观测值的变化检测问题的精确求解技术。基于变化时间分布信息的可获得性,将变化检测问题分类为贝叶斯或最小极大值。贝叶斯最佳解决方案使用有关更改时间分布的先验信息来最小化预期成本,而minimax最佳解决方案在最坏情况下的更改时间分布下将成本最小化。两种类型的问题都得到解决。论文的最重要结果是开发了多项式时间算法来解决重要类别的马尔可夫贝叶斯变化检测问题。用于部分可观察的马尔可夫决策过程的epsilon精确解的现有技术在观察符号的数量上具有复杂度指数。一种称为星座归纳的新算法利用了值函数的凹度和Lipschitz连续性,并且在观察符号的数量上具有复杂度多项式。结果表明,具有变化时间几何分布的变化检测问题,以及变化前后具有相同且独立分布的观测值,可以在多项式时间内解决。而且,在多项式时间内可以解决具有固定数量的递归状态的隐马尔可夫模型的变化检测问题。提供了星座归纳算法的详细实现和分析。;还针对几种类型的极大极小变化检测问题建立了精确的求解方法。具有任意观察分布的有限水平问题被建模为扩展形式的博弈,并使用线性程序求解。具有线性延迟的检测延迟和相同且独立分布的观测值的无限水平问题可以通过累积和过程的ε最优参数化在多项式时间内解决。最后,描述了变化检测问题的策略的性质并进行分析。事实证明,简单类的形式语言足以解决变化检测问题的epsilon精确解决方案,并描述了用于查找最小尺寸策略表示形式的方法。

著录项

  • 作者

    Isom, Joshua David.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Statistics.;Engineering General.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 240 p.
  • 总页数 240
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号