首页> 外文学位 >Dislocation dynamics and plasticity in micropillars and thin films.
【24h】

Dislocation dynamics and plasticity in micropillars and thin films.

机译:微柱和薄膜中的位错动力学和可塑性。

获取原文
获取原文并翻译 | 示例

摘要

Mechanical strength in bulk materials is a size-independent property of the material. However, in the micro to nanometer range, strength becomes dependent on the material size. Strain gradient plasticity theory has been used to explain the size dependent material behavior observed in micro-indentation experiments. However, recent micro-compression experiments on single crystals pillars has shown that the strength of the pillars is dependent on size even in the absence of strain gradients. This requires a new explanation for the observed size effect.;In crystalline solids, strength can be described as the materials ability to resist plastic deformation, which is related to the motion of dislocations. Dislocation dynamics simulations can be used to track the evolution of dislocation structures and hence predict strength in crystalline solids. However, to simulate dislocations in small volumes, the free surfaces must be accounted for accurately. To do this, these simulation codes must be modified to correct for the image stress, which is the difference between the bulk and microcrystal stress fields. These image stress fields are computed using a spectral method which can both quickly and accurately capture the effects of free surfaces for both thin films and cylinders. These methods are needed since dislocation dynamics codes track the evolution of complicated dislocation structures over millions of time steps. Dislocations intersecting free surfaces are accounted for by using a combination of techniques including virtual dislocations and the Yoffe correction.;The possibility of dislocation starvation in micro-pillars is investigated using a combination of dislocation dynamics and molecular dynamics In FCC gold micro-pillars, dislocations are shown to leave the pillars quickly making starvation a likely explanation for the observed size effect. However, in BCC molybdenum micro-pillars, dislocations are able to self replicate. This means that a single dislocation, once nucleated, can generate a significant amount of plastic deformation and that BCC microcrystals are unlikely to be starved. Furthermore, this provides a plausible explanation of recent micro-compression tests on molybdenum alloy pillars that collapse under high stress.;The effects of strain gradients are also investigated through molecular dynamics simulations of gold nanowires in torsion. Plasticity in these wires is observed to be strongly dependent on the orientation of the wires. The orientation specifically can affect the homogeneity of the plastic deformation. Wires oriented along the (110) axis deform homogeneously with the nucleation of coaxial dislocations, similar to Eshelby twist, while wires oriented along the (100) and (111) axis deform heterogeneously with the formation of twist boundaries.
机译:散装材料中的机械强度是材料的尺寸无关特性。但是,在微米到纳米范围内,强度取决于材料尺寸。应变梯度可塑性理论已被用来解释在微观压痕实验中观察到的与尺寸有关的材料行为。但是,最近在单晶柱上进行的微压缩实验表明,即使没有应变梯度,柱的强度也取决于尺寸。这需要对观察到的尺寸效应进行新的解释。在结晶固体中,强度可以描述为材料抵抗塑性变形的能力,塑性变形与位错的运动有关。位错动力学模拟可用于跟踪位错结构的演变,从而预测晶体固体的强度。但是,要模拟小体积位错,必须准确地考虑自由表面。为此,必须修改这些仿真代码以校正图像应力,该应力是体应力场与微晶应力场之间的差异。这些图像应力场是使用光谱方法计算的,该方法可以快速而准确地捕获薄膜和圆柱体自由表面的影响。由于位错动力学代码会跟踪数百万个时间步长上复杂的位错结构的演变,因此需要这些方法。与自由表面相交的位错是通过结合使用虚拟位错和Yoffe校正技术来解决的;;结合位错动力学和分子动力学,研究了FCC金微柱中位错饥饿的可能性。显示出迅速离开支柱,使饥饿成为观察到的尺寸效应的可能解释。但是,在BCC钼微柱中,位错能够自我复制。这意味着,一旦位错成核,就可以产生大量的塑性变形,并且BCC微晶不容易饿死。此外,这为最近在高应力下坍塌的钼合金柱子进行微压缩试验提供了合理的解释;还通过金纳米线在扭转中的分子动力学模拟研究了应变梯度的影响。观察到这些电线中的可塑性在很大程度上取决于电线的方向。定向特别会影响塑性变形的均匀性。沿(110)轴定向的导线在同轴位错的形核作用下均匀变形,类似于Eshelby扭曲,而沿(100)和(111)轴定向的导线异形变形并形成扭曲边界。

著录项

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Mechanical.;Engineering Metallurgy.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号