首页> 外文学位 >Neural network analysis of sensory processing and active data collection.
【24h】

Neural network analysis of sensory processing and active data collection.

机译:感觉处理和主动数据收集的神经网络分析。

获取原文
获取原文并翻译 | 示例

摘要

For over 50 years, sensory neurophysiology has utilized a 'black-box' paradigm, describing the functional relationship between stimuli and neural responses without explicitly considering underlying brain circuitry. In this thesis, we consider two avenues of research which can help to better understand how the functional relationships measured in experiments are ultimately generated by neural circuitry.;In Part I, we demonstrate how the architectural properties of neural networks constrain optimal and invariant stimuli for sensory neurons. In Chapter 2 we demonstrate for neurons whose functional networks are convergent the optimal stimulus must lie on the boundary of a topologically compact set of permissible input unit activities, implying that such a network cannot have a firing rate peak in this space. Applying this to network models of sensory processing predicts monotonic tuning for stimulus contrast, as is observed experimentally. In Chapter 3 we consider quadratic analysis of neural networks and its implications for finding optimal and invariant stimuli. We show how quadratic analysis is constrained by the architecture of the underlying neural network, and how quadratic analysis describes stimulus invariances arising from the first layer but not higher layers of network processing.;In Part II, we consider an approach to sensory neurophysiology based on fitting multiple models in on-line experiments and generating critical stimuli to distinguish competing models. In Chapter 4 we consider the problem of identifying the true parameters of neural network models from finite, noisy data. By solving a differential equation, we show that is only possible for a continuum of different parameters to implement the same input-output function when the hidden unit gains are given by power, exponential or logarithm functions. However, even in networks with standard gains functions continuous parameter confounding can occur as well, making unique recovery of network parameters impossible with standard training sets. Finally, in Chapter 5 we demonstrate how active data collection may overcome the problem of continuum confounding, and illustrate with an experimentally interesting example how on-line stimulus generation may be far more effective for model estimation and comparison than presenting random stimuli.
机译:50多年来,感觉神经生理学一直采用“黑匣子”范式,描述了刺激和神经反应之间的功能关系,而没有明确考虑潜在的大脑回路。在本文中,我们考虑了两种研究途径,这些途径可以帮助更好地理解实验中测量的功能关系是如何最终由神经电路生成的。第一部分,我们演示了神经网络的体系结构特性如何约束最优和不变的刺激。感觉神经元。在第二章中,我们证明了对于其功能网络收敛的神经元,最佳刺激必须位于拓扑紧凑的一组允许的输入单位活动的边界上,这意味着该网络在该空间中不能具有激发速率峰值。将其应用于感觉处理的网络模型可以预测刺激对比的单调调整,如实验观察到的那样。在第三章中,我们考虑了神经网络的二次分析及其对寻找最优和不变刺激的启示。我们展示了二次分析如何受到底层神经网络架构的约束,以及二次分析如何描述源自网络处理的第一层而不是更高层的刺激不变性;在第二部分中,我们考虑了一种基于神经网络的感觉神经生理学方法。在在线实验中拟合多个模型并生成关键刺激以区分竞争模型。在第4章中,我们考虑了从有限的嘈杂数据中识别神经网络模型的真实参数的问题。通过求解微分方程,我们表明,当隐藏的单位增益由幂,指数或对数函数给出时,只有连续的不同参数才能实现相同的输入-输出函数。但是,即使在具有标准增益功能的网络中,也可能发生连续的参数混淆,这使得使用标准训练集无法唯一恢复网络参数。最后,在第5章中,我们演示了主动数据收集如何克服连续性混淆的问题,并通过实验有趣的示例说明了在线刺激生成对于模型估计和比较如何比呈现随机刺激更为有效。

著录项

  • 作者

    DiMattina, Christopher.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Biology Neuroscience.;Computer Science.;Artificial Intelligence.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 343 p.
  • 总页数 343
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号