首页> 外文学位 >Progress towards critical dimension low vacuum scanning electron microscopy.
【24h】

Progress towards critical dimension low vacuum scanning electron microscopy.

机译:临界尺寸低真空扫描电子显微镜的进展。

获取原文
获取原文并翻译 | 示例

摘要

Low vacuum scanning electron microscopy (LVSEM) is proposed and evaluated for next generation Critical Dimension (CD) metrology. Its ability to control charging artifacts and hydrocarbon contamination in order to obtain high signal-to-noise ratio, high resolution image data from insulating materials make the technology an excellent match for the increased use of high-k dielectrics and shrinking feature size in the semiconductor industry. The presence of a gas in the LVSEM chamber means that the probe characteristics and secondary electron amplification, detection, and signal-to-noise ratio differ significantly from conventional high vacuum tools. In order for low vacuum CD approaches to be viable, all of the processes must be understood and described to the degree of accuracy currently available on high vacuum systems. Consequently, the focus of this thesis is to determine an analytic form of the signal-to-noise ratio for two detector configurations: the simplified steady-state cascade system operating in the well defined Townsend's discharge region, and the high resolution, low vacuum immersion lens secondary electron detector, for which the physical amplification process has not been studied in the past. A physically realistic and ultimately predictive model, which could potentially be incorporated in CD simulation codes such as NIST's MONSEL, is developed. Its effectiveness is verified with experimental data acquired as a function of gas pressure for all important operating parameters, such as electron beam energy and current, detector bias, cascade distance, and gas type, and its capability for optimization of the imaging conditions is discussed. Noise characteristics are also analyzed using Monte Carlo gain histograms and pure statistical methods.
机译:提出了低真空扫描电子显微镜(LVSEM)并对其进行了评估,以用于下一代关键尺寸(CD)度量衡。它具有控制带电伪影和碳氢化合物污染以获取高信噪比,来自绝缘材料的高分辨率图像数据的能力,使该技术成为高k电介质使用量的增加和半导体器件尺寸缩小的绝佳选择行业。 LVSEM室中存在气体意味着探针特性和二次电子的放大,检测以及信噪比与传统的高真空工具明显不同。为了使低真空CD方法可行,必须以高真空系统上当前可用的精确度来理解和描述所有过程。因此,本论文的重点是确定两种检测器配置的信噪比分析形式:在明确定义的Townsend放电区域运行的简化稳态级联系统,以及高分辨率,低真空浸没镜头二次电子检测器,其物理放大过程过去从未进行过研究。开发了一种物理上现实的,最终可预测的模型,该模型有可能被纳入CD模拟代码中,例如NIST的MONSEL。对于所有重要的操作参数(例如电子束能量和电流,检测器偏置,级联距离和气体类型),通过获得的与气体压力有关的实验数据验证了其有效性,并讨论了其优化成像条件的能力。还使用蒙特卡洛增益直方图和纯统计方法分析了噪声特性。

著录项

  • 作者

    Tileli, Vasiliki.;

  • 作者单位

    State University of New York at Albany.;

  • 授予单位 State University of New York at Albany.;
  • 学科 Nanoscience.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号