首页> 外文学位 >Microscopic and spectroscopic studies of growth and electronic structure of epitaxial graphene.
【24h】

Microscopic and spectroscopic studies of growth and electronic structure of epitaxial graphene.

机译:显微和光谱学研究外延石墨烯的生长和电子结构。

获取原文
获取原文并翻译 | 示例

摘要

It is generally believed that the Si technology is going to hit a road block soon. Amongst all the potential candidates, graphene shows the most promise as replacement material for the aging Si technology. This has caused a tremendous stir in the scientific community. This excitement stems from the fact that graphene exhibits unique electronic properties. Physically, it is a two-dimensional network of sp2 bonded carbon atoms. The unique symmetry of two equivalent sublattices gives rise to a linear energy dispersion for the charge carriers. As a consequence, the charge carriers behave like massless Dirac particles with a constant speed of c/300, where c is the speed of light. The sublattice symmetry gives rise to unique half-integer quantum Hall effect, Klein's paradox, and weak antilocalization.;In this research work, I was able to successfully study the growth and electronic structure of EG on SiC(0001), in ultra-high vacuum and low-vacuum furnace environment. I used STM to study the growth at an atomic scale and macroscopic scale. With STM imaging, I studied the distinct properties of commonly observed interface region (layer 0), first graphene layer, and the second graphene layer. I was able to clearly resolve graphene lattice in both layer 1 and 2. High resolution imaging of the defects showed a unique scattering pattern. Raman spectroscopy measurements were done to resolve the layer dependent signatures of EG. The characteristic Raman 2D peak was found to be suppressed in layer 1, and a single Lorentzian was seen in layer 2. Ni metal islands were grown on EG by e-beam deposition. STM/STS measurements were done to study the changes in doping and the electronic structure of EG with distance from the metal islands.
机译:人们普遍认为,硅技术很快就会遇到障碍。在所有潜在的候选材料中,石墨烯显示出最有希望成为老化Si技术的替代材料。这在科学界引起了极大的轰动。这种兴奋源自石墨烯具有独特的电子特性。从物理上讲,它是由sp2键合的碳原子组成的二维网络。两个等效子晶格的独特对称性导致电荷载流子的线性能量色散。结果,电荷载流子的行为就像无质量的狄拉克粒子,其恒定速度为c / 300,其中c是光速。亚晶格对称性引起独特的半整数量子霍耳效应,克莱因悖论和弱的反局部化。在这项研究工作中,我成功地研究了超高SiC(0001)上EG的生长和电子结构。真空和低真空炉环境。我使用STM研究了原子级和宏观级的增长。通过STM成像,我研究了通常观察到的界面区域(第0层),第一石墨烯层和第二石墨烯层的不同特性。我能够清楚地分辨出第1层和第2层中的石墨烯晶格。缺陷的高分辨率成像显示出独特的散射图案。进行拉曼光谱测量以解决EG的层依赖性签名。发现在第1层中抑制了特征性的拉曼2D峰,在第2层中观察到了单个Lorentzian。通过电子束沉积,在EG上生长了镍金属岛。进行STM / STS测量以研究EG的掺杂和电子结构随距金属岛的距离的变化。

著录项

  • 作者

    Sharma, Nikhil.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号