首页> 外文学位 >Enhancement of aeroelastic rotor airload prediction methods .
【24h】

Enhancement of aeroelastic rotor airload prediction methods .

机译:气动转子空气负荷预测方法的改进。

获取原文
获取原文并翻译 | 示例

摘要

The accurate prediction of rotor airloads is a current topic of interest in the rotorcraft community. The complex nature of this loading makes this problem especially difficult. Some of the issues that must be considered include transonic effects on the advancing blade, dynamic stall effects on the retreating blade, and wake vortex interactions with the blades, fuselage, and other components. There are numerous codes to perform these predictions, both aerodynamic and structural, but until recently each code has refined either the structural or aerodynamic aspect of the analysis without serious consideration to the other, using only simplified modules to represent the physics. More recent work has concentrated on coupling CFD and CSD computations to be able to use the most accurate codes available to combine the best of the structural and the aerodynamic codes. However, CFD codes are the most computationally expensive codes available, and although combined CFD and CSD methods are shown to give the most accurate predictions available today, the additional accuracy must be deemed worth the time required to perform the computations.;The objective of the research is to both evaluate and extend a range of prediction methods comparing accuracy and computational expense. This range covers many methods where the highest accuracy method shown is a delta loads coupling between an unstructured CFD code and a comprehensive code, and the lowest accuracy is found through a free wake and comprehensive code coupling using simplified 2D aerodynamics. From here, methods to improve the efficiency and accuracy of the CFD code are considered through implementation of grid adaptation and low Mach number preconditioning methods. Applying grid adaptation allow coarser grids to be used where high gradients in the physics are not present, reserving the denser areas for more interesting regions. For steady-state problems, clustering of the grid provides better wake resolution behind the actuator disk. This method is proven to work for the steady-state equations, but its application to rotor flows using the time-accurate equations still needs to be tested. Low Mach number preconditioning is also an efficiency and an accuracy improvement which allows the CFD code to work for a wider range of Mach numbers within a single simulation. There are many cases, especially for rotor flows, where the range of Mach numbers contained in the flow field cover both the incompressible and compressible regimes. Thus, applying the compressible equations to the entire flow field results in governing equations with high stiffness matrices. The preconditioning reduces the numerical stiffness and thus improves the quality of the results. This improved quality is demonstrated through low speed rotor-fuselage simulations.;Further efficiency improvements are obtained by modifying the codes used in the analysis to include more simplified methods. On the aerodynamic side, a coupling between a CFD code and a prescribed rigid motion module has been completed, and on the structural side a coupling between a CSD code and a combination of a 2D airfoil theory and a free wake code is shown. It is found that the rigid motion method is more appropriately applied where blade elasticity is not significant, and the CSD method is far more efficient than CFD methods, but with a penalty in accuracy. The exact formulation of the 2D aerodynamic model used in the CSD code is discussed, as are efficiency improvements to improve the speed of the free wake code. The advantages of the computationally expensive free wake code are tested against a faster dynamic inflow model, and show that there are improvements when using the more accurate wake formulation. A comparison of these methods evaluates the advantages and consequences of each combination, including the types of physics that each method is able to, or not able to, capture through examination of how closely each method matches flight test data.
机译:旋翼航空器载荷的准确预测是旋翼飞机界当前关注的话题。这种加载的复杂性使得这个问题特别困难。必须考虑的一些问题包括前进叶片上的跨音速效应,后退叶片上的动态失速效应,以及尾翼与叶片,机身和其他组件的涡流相互作用。有许多代码可以执行这些预测,包括空气动力学和结构方面的预测,但是直到最近,每个代码都只使用简化的模块来表示物理学,从而在不认真考虑分析的情况下完善了分析的结构或空气动力学方面。最近的工作集中在耦合CFD和CSD计算上,以便能够使用最准确的代码来结合最佳的结构代码和空气动力学代码。但是,CFD代码是可用的计算上最昂贵的代码,尽管显示CFD和CSD的组合方法可以提供当今可用的最准确的预测,但必须认为额外的准确性值得执行计算所需的时间。研究旨在评估和扩展比较准确性和计算费用的预测方法的范围。此范围涵盖了许多方法,其中所示的最高准确性方法是非结构化CFD代码与综合代码之间的增量载荷耦合,而通过使用简化的2D空气动力学的自由唤醒和综合代码耦合发现最低的准确性。从这里开始,通过实现网格自适应和低马赫数预处理方法来考虑提高CFD代码效率和准确性的方法。应用网格自适应可以在物理梯度不高的情况下使用较粗的网格,从而将较稠密的区域保留给更有趣的区域。对于稳态问题,网格集群可在执行器磁盘后面提供更好的唤醒分辨率。该方法已被证明可用于稳态方程,但仍需要测试使用时间精确方程在转子流中的应用。低马赫数预处理还可以提高效率和精度,从而允许CFD代码在单个模拟中就更广泛的马赫数工作。在许多情况下,特别是对于转子流,流场中包含的马赫数范围涵盖了不可压缩状态和可压缩状态。因此,将可压缩方程式应用于整个流场会导致具有高刚度矩阵的控制方程式。预处理降低了数值刚度,从而提高了结果的质量。通过低速转子机身仿真可以证明这种改进的质量。通过修改分析中使用的代码以包括更简化的方法,可以进一步提高效率。在空气动力学方面,已完成CFD代码与指定的刚性运动模块之间的耦合,而在结构方面,则显示了CSD代码与2D机翼理论和自由尾流代码的组合之间的耦合。发现刚性运动方法更适用于叶片弹性不显着的情况,并且CSD方法远比CFD方法更有效,但准确性受到影响。讨论了CSD代码中使用的2D空气动力学模型的精确公式,以及提高效率以提高自由唤醒代码速度的方法。针对较快速的动态流入模型测试了计算上昂贵的免费唤醒代码的优点,并显示了使用更精确的唤醒公式时的改进。这些方法的比较评估了每种组合的优点和后果,包括通过检查每种方法与飞行测试数据的匹配程度,每种方法能够或不能捕获的物理类型。

著录项

  • 作者

    Abras, Jennifer N.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 222 p.
  • 总页数 222
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

  • 入库时间 2022-08-17 11:38:13

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号