首页> 外文学位 >Improving biocompatibility by controlling protein adsorption: Modification and design of biomaterials using poly(ethylene glycol) microgels and microspheres.
【24h】

Improving biocompatibility by controlling protein adsorption: Modification and design of biomaterials using poly(ethylene glycol) microgels and microspheres.

机译:通过控制蛋白质的吸附来提高生物相容性:使用聚乙二醇微凝胶和微球对生物材料进行改性和设计。

获取原文
获取原文并翻译 | 示例

摘要

Guided by the clinical needs of patients and developments in biology and materials science, the primary focus of the biomaterials field remains at the solid/liquid interface between biomaterial surfaces and biological fluids. For blood-contacting devices, biological responses are initially elicited and directed by proteins that adsorb from this multicomponent solution to form thin films on their surfaces. The identity, conformation, and quantity of adsorbed proteins are related to the properties of a material's surface. For example, hydrophobic surfaces tend to be thrombotic via interactions between platelets and adsorbed fibrinogen, while surface-activation of specific enzymes initiates the coagulation cascade on hydrophilic surfaces. The objective of this thesis is to improve the design of biomaterials through the analysis and control of adsorbing protein layers. This goal is approached through three separate strategies. First, a proteomics-based methodology is presented for the assessment of protein conformation at the residue level after adsorption to biomaterial surfaces. A quantitative mass spectrometric technique is additionally suggested for the identification and quantification of proteins within adsorbed protein layers. Second, a method is described for the covalent attachment of poly(ethylene glycol) (PEG)-based hydrogel coatings onto biomaterials surfaces for the minimization of protein adsorption. The coatings are applied using partially crosslinked PEG solutions containing polymer and protein oligomers and microgels that can be designed to control cell adhesion. Finally, a modular strategy is proposed for the assembly of bioactive PEG-based hydrogel scaffolds. This was accomplished using novel PEG microspheres with diverse characteristics that individually contribute to the ability of the scaffold to direct cellular infiltration. The methodologies proposed by this thesis contribute to the recent shift in biomaterials and tissue engineering strategies towards directed cellular responses at the molecular level.
机译:根据患者的临床需求以及生物学和材料科学的发展,生物材料领域的主要重点仍然是生物材料表面和生物流体之间的固/液界面。对于血液接触设备,最初会从这种多组分溶液中吸附并在其表面形成薄膜的蛋白质引起并指导生物反应。吸附蛋白的身份,构象和数量与材料表面的特性有关。例如,疏水表面倾向于通过血小板和吸附的纤维蛋白原之间的相互作用而形成血栓,而特定酶的表面活化则引发亲水表面上的凝血级联反应。本文的目的是通过对蛋白质吸附层的分析和控制来改进生物材料的设计。这个目标是通过三种单独的策略来实现的。首先,提出了一种基于蛋白质组学的方法,用于评估吸附到生物材料表面后残留水平的蛋白质构象。另外建议使用定量质谱技术来鉴定和定量吸附的蛋白质层中的蛋白质。其次,描述了一种方法,用于将基于聚乙二醇(PEG)的水凝胶涂层共价附着到生物材料表面上,以最大程度地减少蛋白质吸附。使用包含聚合物和蛋白质低聚物和微凝胶的部分交联的PEG溶液涂覆涂料,可以设计这些微凝胶来控制细胞粘附。最后,提出了用于组装基于生物活性PEG的水凝胶支架的模块化策略。这是使用具有各种特征的新颖PEG微球完成的,这些微球分别有助于支架引导细胞浸润的能力。本论文提出的方法促成了生物材料和组织工程策略向分子水平上定向细胞反应的最新转变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号