首页> 外文学位 >Engineering nanocatalysts for selective growth of carbon nanotubes.
【24h】

Engineering nanocatalysts for selective growth of carbon nanotubes.

机译:工程纳米催化剂,用于碳纳米管的选择性生长。

获取原文
获取原文并翻译 | 示例

摘要

The unique physical properties of carbon nanotubes (CNTs) are determined by their atomic-scale structure. This structure-property relationship is clearly observed in single-walled carbon nanotubes (SWCNTs) where changes in atomic structure alter their electronic and optical properties. However, current synthetic approaches are not capable of producing well-defined CNTs. Since most practical technological applications require predictable and uniform performance, researchers have devoted enormous efforts towards the preparation of homogeneous CNTs.;This thesis describes a novel method for selective synthesis of CNTs using a two-stage, sequential, floating-catalyst synthesis route based on the preparation of metal nanocatalysts via microplasma techniques and gas-phase CVD growth of CNTs. Dimensionally- and compositionally-tuned metal nanocatalysts are synthesized using a continuous-flow, atmospheric-pressure microplsama reactor. The as-grown metal nanoparticles are subsequently introduced into a heated flow furnace reactor to catalyze CNT growth. Aerosol instrumentation is used to monitor the CNT catalytic growth on line, allowing kinetic parameters including growth rate and activation energy for CNT growth to be extracted.;Detailed material microcharacterization including transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) shows that the size, composition, and crystal structure of metal nanoparticles can be engineered using the microplasma synthesis technique. By controlling the catalyst composition, we show that CNTs can be grown at temperatures as low as 300 °C with an activation energy of 37 kJ/mol for Ni0.67Fe 0.33 nanocatalysts. Additionally, independent preparation of dimensionally-tuned Ni nanoparticles in a microplasma allows precise control over the inner and outer diameter, as well as the number of walls in the CNTs. Reducing the Ni catalyst size from 3.1 to 2.2 nm is found to increase the growth rate by as much as 13 times and to achieve higher purity of SWCNTs (75%) than the commercial HiPCO process (65%).;One of the critical challenges for applications of CNTs is chirality control (e.g. metallic vs. semiconducting). Based on the methodology developed here, we have performed a systematic study with varying compositions of NiFe nanocatalysts. The results show that the composition of the nanocatalysts significantly influences the chirality distribution of as-grown SWCNTs. Detailed microcharacterization of the NiFe nanocatalysts suggests a link between the composition and, therefore, crystal structure of NiFe nanocatalysts and the final SWCNT chirality distribution, independent of particle size.
机译:碳纳米管(CNT)的独特物理特性取决于它们的原子尺度结构。这种结构性质关系在单壁碳纳米管(SWCNT)中清晰可见,其中原子结构的变化会改变其电子和光学性能。然而,当前的合成方法不能生产定义明确的CNT。由于大多数实际技术应用需要可预测的和均匀的性能,因此研究人员致力于制备均相碳纳米管。本论文介绍了一种新的方法,该方法使用一种基于两步,顺序,浮式催化剂合成路线的碳纳米管选择性合成方法。通过等离子技术和碳纳米管的气相CVD生长制备金属纳米催化剂。使用连续流,大气压的微等离子体反应器合成了经过尺寸和组成调整的金属纳米催化剂。随后将所生长的金属纳米颗粒引入加热流炉反应器中以催化CNT的生长。气溶胶仪器用于在线监测CNT的催化生长,从而提取动力学参数,包括生长速率和CNT生长的活化能。;详细的材料微特征包括透射电子显微镜(TEM),能量色散X射线光谱(EDX) ),X射线衍射(XRD)显示可以使用微等离子体合成技术对金属纳米颗粒的大小,组成和晶体结构进行工程设计。通过控制催化剂的组成,我们表明CNT可以在低至300°C的温度下生长,对于Ni0.67Fe 0.33纳米催化剂,其活化能为37 kJ / mol。此外,在微等离子体中独立制备尺寸可调的Ni纳米粒子可以精确控制内径和外径以及CNT中的壁数。将Ni催化剂的尺寸从3.1 nm减小到2.2 nm可以使生长速率提高13倍,并实现比工业HiPCO工艺(65%)更高的SWCNT(75%)纯度。关键挑战之一碳纳米管的应用是手性控制(例如,金属与半导体)。基于此处开发的方法,我们对各种组成的NiFe纳米催化剂进行了系统的研究。结果表明,纳米催化剂的组成显着影响生长中的SWCNT的手性分布。 NiFe纳米催化剂的详细微特征表明,在组成以及NiFe纳米催化剂的晶体结构与最终的SWCNT手性分布之间存在联系,而与颗粒大小无关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号