首页> 外文学位 >Numerical methods with reduced grid dependency for enhanced oil recovery.
【24h】

Numerical methods with reduced grid dependency for enhanced oil recovery.

机译:减少网格依赖性的数值方法,可提高采油率。

获取原文
获取原文并翻译 | 示例

摘要

In recent years there has been a resurgence of interest in enhanced oil recovery techniques, such as gas injection and in-situ combustion, as the need to access a wider array of hydrocarbon resources increases. Along with this, CO2 sequestration as a carbon storage mechanism is increasingly important. These subsurface flow problems can be physically unstable at the scale modeled. This means that the displacement front will generally exhibit an unstable growth pattern known as viscous fingering. When simulating these processes, numerical errors which can be strongly correlated with the underlying computational grid can trigger, or at least bias, the formation of these fingers in ways not dictated by the underlying rock properties. This can give rise to the so-called grid orientation effect, where varying the orientations of the computational grid results in convergence to fundamentally different solutions.;The interest of this thesis is the development of numerical techniques that reduce grid dependency for these processes. We do this in a manner that draws upon fundamental numerical analysis techniques in conjunction with a physical intuition about the underlying governing equations. The governing equations for subsurface flow are of a mixed elliptic-hyperbolic character; here we focus on the hyperbolic portion but seek methods compatible with general elliptic discretizations and computational grid topologies.;Some aspects of the grid dependency can be traced back directly to the handling of the injection wells. Perturbation created early in time and near the injection wells propagate into the interior of the domain setting up an initial biasing for the simulation. We demonstrate that the handling of injection wells drastically affects the final result. We propose two methods, a well-sponge method and a local embedding technique, which extends the well region based on near-well models. Both of these methods drastically increases the similarity between the solutions on different computational grids.;The numerical method used in the interior region can also have a significant impact on the computed solution. For multidimensional (multi-D) problems the structure of the numerical diffusion tensor creates preferential flow directions. These preferential flow directions can be strongly coupled to the grid, especially when a 1-D method is applied dimension by dimension. This motivates the development of truly multi-D transport discretizations that incorporate local flow information into the flux calculation. We develop a family of compact, upstream biased multi-D finite volume methods for 2-D simulation. The methods control the structure of the diffusion tensor and incorporate characteristic flow information through the use of a local coupling methodology based on interaction regions. The family of schemes is positive for linear equations and monotone for a class of scalar nonlinear equations.;Two multi-D schemes, tight multi-D upstream weighting and smooth multi-D upstream weighting, are proposed and analyzed. Since transverse diffusion largely controls finger formation in linear problems, a third scheme is proposed called the Flat Scheme, which has constant transverse diffusion. All the multi-D methods are appropriate for both explicit and implicit time stepping. The methods are applied to both miscible and immiscible displacement problems and significantly reduce biasing due to the grid as compared with the commonly used single point upstream weighting method.
机译:近年来,随着对更广泛的碳氢化合物资源的需求日益增加,人们对增强的采油技术(例如注气和现场燃烧)的兴趣再次兴起。随之而来的是,将二氧化碳封存作为碳存储机制变得越来越重要。在建模的规模下,这些地下流动问题可能在物理上不稳定。这意味着位移前沿通常会显示出不稳定的生长模式,称为粘性指法。在模拟这些过程时,可以与基础计算网格密切相关的数值误差可以触发或至少以不取决于基础岩石属性的方式偏置这些指状体的形成。这可能会引起所谓的网格方向效应,其中改变计算网格的方向导致收敛到根本不同的解决方案。本论文的目的是开发降低这些过程对网格依赖性的数值技术。我们采用一种基本的数值分析技术,并结合有关基本控制方程的物理直觉来进行此操作。地下流动的控制方程具有椭圆-双曲线混合特征。在这里,我们专注于双曲部分,但寻求与常规椭圆离散化和计算网格拓扑兼容的方法。网格依赖性的某些方面可以直接追溯到注入井的处理。在注入井附近及早产生的扰动传播到区域内部,为模拟建立了初始偏差。我们证明注入井的处理会严重影响最终结果。我们提出了两种方法,一种井喷方法和一种局部嵌入技术,它们基于近井模型扩展了井区。这两种方法都极大地提高了不同计算网格上解之间的相似性。内部区域中使用的数值方法也可能对计算出的解产生重大影响。对于多维(multi-D)问题,数值扩散张量的结构会产生优先流动方向。这些优先流动方向可以牢固地耦合到网格,尤其是在逐维应用一维方法时。这激励了真正的多维输运离散化的发展,该离散化将局部流信息纳入通量计算中。我们为二维仿真开发了一系列紧凑的,上游偏置的多维有限体积方法。这些方法控制扩散张量的结构,并通过使用基于交互作用区域的局部耦合方法来合并特征流信息。该系列方案对于线性方程是正的,对于一类标量非线性方程是单调的。;提出并分析了两种多D方案,即紧的多D上游加权和平滑的多D上游加权。由于横向扩散主要控制线性问题中的手指形成,因此提出了第三种方案,称为扁平方案,该方案具有恒定的横向扩散。所有的multi-D方法都适用于显式和隐式时间步进。与常用的单点上游加权方法相比,该方法适用于可混溶和不可混溶位移问题,并显着减少了由于网格造成的偏差。

著录项

  • 作者

    Kozdon, Jeremy Edward.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Mathematics.;Engineering Petroleum.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 110 p.
  • 总页数 110
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;石油、天然气工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号