首页> 外文学位 >Chaotic scattering in an open vase-shaped cavity: Topological, numerical, and experimental results.
【24h】

Chaotic scattering in an open vase-shaped cavity: Topological, numerical, and experimental results.

机译:开口的花瓶形腔体中的混沌散射:拓扑,数值和实验结果。

获取原文
获取原文并翻译 | 示例

摘要

We present a study of trajectories in a two-dimensional, open, vase-shaped cavity in the absence of forces The classical trajectories freely propagate between elastic collisions. Bound trajectories, regular scattering trajectories, and chaotic scattering trajectories are present in the vase. Most importantly, we find that classical trajectories passing through the vase's mouth escape without return. In our simulations, we propagate bursts of trajectories from point sources located along the vase walls. We record the time for escaping trajectories to pass through the vase's neck. Constructing a plot of escape time versus the initial launch angle for the chaotic trajectories reveals a vastly complicated recursive structure or a fractal. This fractal structure can be understood by a suitable coordinate transform. Reducing the dynamics to two dimensions reveals that the chaotic dynamics are organized by a homoclinic tangle, which is formed by the union of infinitely long, intersecting stable and unstable manifolds.;This study is broken down into three major components. We first present a topological theory that extracts the essential topological information from a finite subset of the tangle and encodes this information in a set of symbolic dynamical equations. These equations can be used to predict a topologically forced minimal subset of the recursive structure seen in numerically computed escape time plots. We present three applications of the theory and compare these predictions to our simulations. The second component is a presentation of an experiment in which the vase was constructed from Teflon walls using an ultrasound transducer as a point source. We compare the escaping signal to a classical simulation and find agreement between the two. Finally, we present an approximate solution to the time independent Schrodinger Equation for escaping waves. We choose a set of points at which to evaluate the wave function and interpolate trajectories connecting the source point to each "detector point". We then construct the wave function directly from these classical trajectories using the two-dimensional WKB approximation. The wave function is Fourier Transformed using a Fast Fourier Transform algorithm resulting in a spectrum in which each peak corresponds to an interpolated trajectory. Our predictions are based on an imagined experiment that uses microwave propagation within an electromagnetic waveguide. Such an experiment exploits the fact that under suitable conditions both Maxwell's Equations and the Schrodinger Equation can be reduced to the Helmholtz Equation. Therefore, our predictions, while compared to the electromagnetic experiment, contain information about the quantum system. Identifying peaks in the transmission spectrum with chaotic trajectories will allow for an additional experimental verification of the intermediate recursive structure. Finally, we summarize our results and discuss possible extensions of this project.
机译:我们介绍了在没有力的情况下在二维,开放,花瓶形腔中的轨迹的研究。经典轨迹在弹性碰撞之间自由传播。花瓶中存在束缚轨迹,规则散射轨迹和混沌散射轨迹。最重要的是,我们发现穿过花瓶嘴巴的经典轨迹逃逸而没有返回。在我们的模拟中,我们传播了沿花瓶壁上的点源发出的轨迹爆发。我们记录逃脱轨迹通过花瓶脖子的时间。针对混沌轨迹构建逃逸时间与初始发射角的关系图,揭示了极为复杂的递归结构或分形。这种分形结构可以通过适当的坐标变换来理解。将动力学简化为二维可知,混沌动力学是由同长缠结组织的,该缠结是由无限长,相交的稳定和不稳定流形的并集形成的。本研究分为三个主要部分。我们首先提出一种拓扑理论,该理论从缠结的有限子集中提取必要的拓扑信息,并将该信息编码为一组符号动力学方程式。这些方程式可用于预测在数值计算的逃逸时间图中看到的递归结构的拓扑强制最小子集。我们介绍了该理论的三种应用,并将这些预测与我们的模拟进行了比较。第二部分是实验的演示,其中花瓶是使用超声波换能器作为点源,从特氟龙墙壁上制成的。我们将转义信号与经典模拟进行比较,并找到两者之间的一致性。最后,我们给出了与时间无关的薛定inger方程逃逸波的近似解。我们选择一组点来评估波动函数并插补将源点连接到每个“检测器点”的轨迹。然后,我们使用二维WKB近似直接从这些经典轨迹构造波函数。使用快速傅立叶变换算法对波函数进行傅立叶变换,得到的频谱中每个峰对应于一个内插轨迹。我们的预测基于使用微波在电磁波导管中传播的想象实验。这样的实验利用了这样的事实:在合适的条件下,麦克斯韦方程和薛定inger方程都可以简化为亥姆霍兹方程。因此,与电磁实验相比,我们的预测包含有关量子系统的信息。用混沌轨迹识别透射光谱中的峰值将允许对中间递归结构进行额外的实验验证。最后,我们总结我们的结果并讨论该项目的可能扩展。

著录项

  • 作者

    Novick, Jaison Allen.;

  • 作者单位

    The College of William and Mary.;

  • 授予单位 The College of William and Mary.;
  • 学科 Applied Mathematics.;Physics Theory.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号