首页> 外文学位 >Effects of hypoxia, hyperoxia, hypercapnia and elevated carboxyhemoglobin concentration on VO(2)max and exercise capacity in goats.
【24h】

Effects of hypoxia, hyperoxia, hypercapnia and elevated carboxyhemoglobin concentration on VO(2)max and exercise capacity in goats.

机译:缺氧,高氧,高碳酸血症和羧基血红蛋白浓度升高对山羊VO(2)max和运动能力的影响。

获取原文
获取原文并翻译 | 示例

摘要

Humans and other animals sometimes have to function in extreme environmental conditions that result in changes in inspired gas pressures. Understanding how adverse conditions affect exercise performance and aerobic capacity enables us to better predict and prepare for exposures to these environments when aerobic exercise is required. The purpose of this study was to quantify if and how exercise capacity and maximal aerobic capacity ( V˙O2max) are affected in mammals breathing hypoxic, and/or hypercapnic gases with or without breathing small amounts of carbon monoxide (CO) to raise their carboxyhemoglobin fraction (FHbCO). The experiments tested if and how different inspired fractions of oxygen (O 2) (0.06, 0.09, 0.12, 0.15, 0.21 and 0.50), carbon dioxide (CO 2) (0 and 0.05) and inspired CO producing elevated FHbCO (0, 0.15, 0.30 and 0.45) alone and in combination cause dose-dependent responses to V˙O2max and treadmill speed eliciting V˙O2max . To answer these questions, a cross-flow indirect calorimetry system was constructed to measure oxygen consumption (V˙O2) and O2-transport variables in female goats exercising on a treadmill. Oxygen concentration was measured in arterial and mixed-venous blood and in combination with recorded heart rates (fH) enabled cardiac output (Q˙) and stroke volume (Vs) to be calculated. In order to quantify the effects of altered inspired gases and V˙O 2max on endurance capacity, goats breathed room air (FIO 2 0.21) or modest hypoxia (FIO2 0.12) with or without elevated FHbCO (0.30 FHbCO) while running until exhaustion at speeds above and below the speed required to elicit V˙O2max.;Both hypoxia and elevated FHbCO decreased V˙O 2max and running speed at V˙O 2max in a dosedependent manner while hyperoxia and hypercapnia showed no significant differences from room air (0.21 O2). A multiple stepwise regression showed that fractional reduction of V˙O 2max was best predicted from the O2 fraction in inspired air (FIO2) and FHbCO with the equation: V˙O2max gas/V˙O2max air = 0.306 + (3.00 * FIO2) -- (0.849 * F HbCO) (R2 = 0.884). Hypoxia and elevated FHbCO both decrease arterial O2 concentration (C aO2), albeit by different mechanisms -- decreased arterial O2 saturation (SaO2) of hemoglobin-binding sites vs. decreased capacity of the hemoglobin molecule (Hb) to bind O 2. Elevated FHbCO increased SaO2 at a given oxygen partial-pressure (PO2) and induced hyperventilation; both of which resulted in the combination of these gases affecting V˙O2max by less than the sum of each individually. The decrease in CaO2 was correlated with the decrease in V˙O2max which was correlated with the decrease in mechanical power output. Neither hypoxia nor elevated FHbCO significantly decreased Q˙, suggesting that Q˙ is unchanged at maximal exercise regardless of inspired gas concentrations despite a 60% decrease in V˙O2max. Finally, conditions that lower V˙O2max shift the speed vs. endurance time relationship as time-to-fatigue (TTF) was shortened at the same absolute V˙O2 whether the goats breathed hypoxic gas or had elevated FHbCO. Results from this study suggest exercise capacity can be predicted from FIO2 and FHbCO and can be used to predict the decrement in an individual's performance capabilities in these environments.
机译:人类和其他动物有时必须在极端环境条件下运行,这会导致吸气压力发生变化。了解不利条件如何影响运动表现和有氧运动能力,使我们能够更好地预测和准备在需要有氧运动时暴露于这些环境中。这项研究的目的是量化在呼吸或不呼吸少量一氧化碳(CO)来增加其碳氧血红蛋白的哺乳动物中,是否会以及如何影响运动能力和最大有氧能力(VO2max)以及如何影响哺乳动物的运动能力和最大有氧能力(VO2max)分数(FHbCO)。实验测试了是否以及如何激发氧气(O 2)(0.06、0.09、0.12、0.15、0.21和0.50),二氧化碳(CO 2)(0和0.05)的不同馏分以及产生CO的FHbCO升高(0,0.15) ,0.30和0.45)单独或组合引起对V O2max的剂量依赖性响应和引起V O2max的跑步机速度。为了回答这些问题,构造了横流间接量热系统以测量在跑步机上运动的雌性山羊的耗氧量(V O2)和O 2输送变量。测量动脉和混合静脉血中的氧气浓度,并结合记录的心率(fH)来计算心输出量(QQ)和中风量(Vs)。为了量化吸入气体和V O 2 max的变化对耐力的影响,山羊以一定的速度呼吸,无论有无FHbCO(0.30 FHbCO),呼吸室内空气(FIO 2 0.21)或适度的低氧(FIO2 0.12)。高于和低于引起V O2max所需的速度;缺氧和FHbCO升高均以剂量依赖的方式降低V O 2max和在V O 2max的运行速度,而高氧和高碳酸血症与室内空气无明显差异(0.21 O2) 。多元逐步回归表明,从吸气(FIO 2)和FHbCO中的O 2分数可最佳预测V O 2max的分数降低,方程式为:V O2max气体/ V O2max空气= 0.306 +(3.00 * FIO2)- -(0.849 * F HbCO)(R2 = 0.884)。缺氧和FHbCO升高均会降低动脉血O2浓度(C aO2),尽管机制不同-血红蛋白结合位点的动脉血氧饱和度(SaO2)降低与血红蛋白分子(Hb)结合O 2的能力降低。在给定的氧气分压(PO2)下增加SaO2并引起过度换气;两者导致这些气体的组合对V O2max的影响小于每种气体的总和。 CaO 2的减少与V O2max的减少有关,这与机械功率输出的减少有关。缺氧或FHbCO升高均未显着降低Q点,提示Q尽管最大吸气量减少了60%,但在最大运动量下,吸入气体浓度不变。最后,无论山羊呼吸低氧气体还是FHbCO升高,在相同的绝对V O2下,随着疲劳时间(TTF)的降低,V O2max降低了速度与耐久时间关系的条件。这项研究的结果表明,可以通过FIO2和FHbCO预测运动能力,并可以用来预测个人在这些环境中的运动能力下降。

著录项

  • 作者

    Crocker, George Hayes.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Biology Physiology.
  • 学位 M.S.
  • 年度 2010
  • 页码 73 p.
  • 总页数 73
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号