首页> 外文学位 >Novel biochip for simultaneously monitoring mechanical and electrical properties of neurons in vitro.
【24h】

Novel biochip for simultaneously monitoring mechanical and electrical properties of neurons in vitro.

机译:新型生物芯片,可在体外同时监测神经元的机械和电气特性。

获取原文
获取原文并翻译 | 示例

摘要

Adhesion plays a fundamental role in function and development of all multi-cellular organisms. Recent evidence suggests that integrin mediated adhesion of neurons has an immediate effect on electrophysiology. Common approaches for studying adhesion lack real-time capabilities, require sample destruction and are very difficult to couple to electrophysiological measurements. In this study, a novel microsensor platform was designed and developed for simultaneous, quantitative, real-time monitoring of integrin mediated adhesion and electrophysiology of primary neurons in vitro. The proposed technology combines micro-acoustic sensors capable of tracking changes in mechanics of the adhering neuronal layer and microelectrode arrays for recording extracellular unit activity. The first part of the project involved probing the exact events and cell components involved in the adhesion measured by the acoustic sensors. This is followed by theoretical considerations and finite element modeling, design and analysis of microsensor operation in aqueous environments. The third part involves the manufacturing and incorporation of the sensor on a lab-on-a-chip type platform and evaluating sensor stability and performance.;In addition, modulating surface roughness with carbon nanotubes drives adhering neurons to exhibit action potentials as early as four days in culture. Overall, this work present a unique biochip that can enable novel insights into the relationship between integrin adhesion and changes in electrical properties of neurons, ultimately aiding in answering questions about mechanisms that govern the structural and electrophysiology aspects of neuronal plasticity.
机译:粘附在所有多细胞生物的功能和发育中起着基本作用。最近的证据表明,整联蛋白介导的神经元粘附对电生理有直接影响。研究粘附力的常用方法缺乏实时功能,需要破坏样品,并且很难与电生理学测量耦合。在这项研究中,设计并开发了一种新型微传感器平台,用于在体外同步,定量,实时监测整联蛋白介导的初级神经元的粘附和电生理。拟议的技术结合了微声传感器,该传感器能够跟踪粘附的​​神经元层和微电极阵列的力学变化,以记录细胞外单位的活性。该项目的第一部分涉及探测由声传感器测量的粘附力的确切事件和细胞成分。随后是理论上的考虑和有限元建模,水环境中微传感器操作的设计和分析。第三部分涉及在芯片实验室型平台上制造和整合传感器,并评估传感器的稳定性和性能。此外,利用碳纳米管调节表面粗糙度可驱动粘附的神经元在四年前表现出动作电位文化的日子。总的来说,这项工作提出了一种独特的生物芯片,可以使人们对整合素粘附与神经元电特性变化之间的关系有新颖的见解,最终有助于回答有关控制神经元可塑性的结构和电生理方面的问题。

著录项

  • 作者

    Khraiche, Massoud Louis.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Biology Cell.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号