首页> 外文学位 >Forest structure monitoring with small footprint LIDAR-optimized spectral remote sensing.
【24h】

Forest structure monitoring with small footprint LIDAR-optimized spectral remote sensing.

机译:利用小面积激光雷达优化光谱遥感进行森林结构监测。

获取原文
获取原文并翻译 | 示例

摘要

Forest structural content of hypserspectral imagery was evaluated over oak-hickory forests within the Ozark National Forest in north-central Arkansas, USA, and evaluated for prediction of basal area. A LIDAR-assisted assessment of the structural information contained in the hyperspectral imagery was used in a machine learning process to define the spectral derivatives that would best predict biophysical variables. NASA Hyperion hyperspectral satellite derivatives were used to develop rule sets for predicting normalized height percentile (NHP) surfaces from a Leica Geosystems ALS50 small footprint LIDAR point cloud. The most successful predictors of forest structure were subsequently tested in rule sets to predict basal area measured in situ. Selected hyperspectral indices and bands from the minimum noise fraction transformation (MNF) were converted to rule sets using the Cubist machine learning decision tree. The machine learning phase was able to predict the LIDAR normalized height percentiles with accuracies between 2.08--3.69 meters based on the root mean squared error. The results indicate the hyperspectral data contains valuable information that can predict the canopy and in particular understory characteristics of the forest. The prediction of the lowest NHP layer (representing understory) consistently resulted in the highest accuracy of 2.08 meters. The results suggest, at the 30 x 30 m measurement scale, that orbital hyperspectral imagery can be used as a first step in the monitoring of forest structural variables of interest. Continued development of rapidly calibrated biophysical remote sensing techniques will allow timely and accurate assessment of forest conditions across large geographic regions.
机译:在美国阿肯色州中北部的奥扎克国家森林内的橡树林中,对超光谱图像的森林结构成分进行了评估,并对基础面积的预测进行了评估。在机器学习过程中,使用LIDAR辅助评估了高光谱图像中包含的结构信息,以定义最能预测生物物理变量的光谱导数。 NASA Hyperion高光谱卫星衍生工具用于开发规则集,以根据Leica Geosystems ALS50小尺寸LIDAR点云预测归一化高度百分比(NHP)表面。随后在规则集中测试了最成功的森林结构预测因子,以预测就地测量的基础面积。使用Cubist机器学习决策树将来自最小噪声分数变换(MNF)的选定高光谱索引和频带转换为规则集。机器学习阶段能够根据均方根误差来预测LIDAR归一化高度百分比,其精度在2.08--3.69米之间。结果表明,高光谱数据包含可以预测森林冠层特别是林下特征的有价值的信息。最低NHP层(代表底层)的预测始终导致2.08米的最高精度。结果表明,在30 x 30 m的测量范围内,轨道高光谱图像可以用作监测感兴趣的森林结构变量的第一步。快速校准的生物物理遥感技术的不断发展将使大范围地理区域的森林状况得到及时,准确的评估。

著录项

  • 作者单位

    University of Arkansas.;

  • 授予单位 University of Arkansas.;
  • 学科 Agriculture Forestry and Wildlife.;Remote Sensing.;Natural Resource Management.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 115 p.
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号