首页> 外文学位 >A study of nitric oxide synthase from the bacterium Geobacillus stearothermophilus, and its implications for mammalian nitric oxide synthase.
【24h】

A study of nitric oxide synthase from the bacterium Geobacillus stearothermophilus, and its implications for mammalian nitric oxide synthase.

机译:嗜热脂肪地芽孢杆菌中一氧化氮合酶的研究及其对哺乳动物一氧化氮合酶的影响。

获取原文
获取原文并翻译 | 示例

摘要

Nitric oxide synthase (NOS) generates NO via a sequential two-step reaction requiring two molecules of oxygen [L-arginine (L-Arg) → N-hydroxy- L-arginine (NOHA) → L-citrulline + NO]. Each step of the reaction follows a distinct mechanism defined by each substrate (L-Arg or NOHA) bound to the heme active site. 5,6,7,8-Tetrahydrobiopterin (H4B) is a cofactor of the reaction. The reaction rate of NOS from a thermophilic bacterium, Geobacillus stearothermophilus (gsNOS) is relatively slow compared to other NOSs. Hence, gsNOS provides a unique model for studying the mechanistic differences between the two steps of the NOS reaction in greater detail.;In Chapter 2 we used equilibrium resonance Raman spectroscopy (RRS) to characterize ferric, ferrous and ferric-NO bound gsNOS under different substrate and cofactor conditions. In Chapter 3 we studied the ferrous-CO adduct of gsNOS by RRS and found the first strong evidence that the two substrates have distinct influences on both the proximal and distal sides of the heme in the active site. In Chapter 4, the application of optical stopped-flow spectroscopy to study the gsNOS reaction led us to conclude that NOHA facilitates formation of a six-coordinate water-bound ferric derivative, unique to gsNOS, after decay of the primary stable oxy-intermediate in NOS, presumably due to its active site enclosing effect (described in this chapter) as well as its proximal electron-enriching effect (elaborated on in Chapter 3). The same study indicates that the rate-determining step in both steps of the NOS reaction is the weakening of the Fe-O bond after the formation of the primary oxygen intermediate. Finally in Chapter 5, a continuous flow RRS study of the reaction between ferrous gsNOS (under different substrate and cofactor conditions) and oxygen helped us identify the primary oxy-intermediate of gsNOS to be a ferric-superoxide complex. It also allowed us to confirm observations in other NOSs of the interaction of L-Arg with the ferric-superoxide complex to promote O-O bond scission, which leads to the first step of the NOS reaction. In addition, this study showed that NOHA's effect on the ferric-superoxide complex of gsNOS is distinct from that of L-Arg.
机译:一氧化氮合酶(NOS)通过需要两个氧分子的连续两步反应生成NO [L-精氨酸(L-Arg)→N-羟基-L-精氨酸(NOHA)→L-瓜氨酸+ NO]。反应的每个步骤都遵循与血红素活性位点结合的每种底物(L-Arg或NOHA)定义的独特机制。 5,6,7,8-四氢生物蝶呤(H4B)是反应的辅助因子。与其他NOS相比,嗜热细菌嗜热地热芽孢杆菌(gsNOS)中NOS的反应速率相对较慢。因此,gsNOS提供了一个独特的模型,用于更详细地研究NOS反应的两个步骤之间的机理差异。在第二章中,我们使用了平衡共振拉曼光谱(RRS)来表征在不同条件下铁,铁和铁-NO结合的gsNOS。底物和辅因子条件。在第3章中,我们通过RRS研究了gsNOS的亚铁-CO加合物,并发现了第一个有力证据,表明这两种底物在活性位点对血红素的近端和远端都有明显的影响。在第4章中,应用光学停止流光谱学研究gsNOS反应使我们得出结论,在稳定的一级稳定氧中间体分解后,NOHA促进了gsNOS独特的六配位水结合铁衍生物的形成。 NOS可能是由于其活性位点封闭效应(在本章中进行了描述)以及其近端电子富集效应(在第3章中进行了详细介绍)。相同的研究表明,在NOS反应的两个步骤中,决定速率的步骤是在形成伯氧中间体后,Fe-O键的作用减弱。最后,在第5章中,对亚铁gsNOS(在不同的底物和辅因子条件下)与氧气之间的反应进行的连续流RRS研究帮助我们确定了gsNOS的主要氧中间体为铁超氧化物络合物。这也使我们能够确认在其他NOS中观察到的L-Arg与铁超氧化物配合物的相互作用以促进O-O键断裂,这导致了NOS反应的第一步。此外,这项研究表明,NOHA对gsNOS的铁超氧化物复合物的作用与L-Arg的作用不同。

著录项

  • 作者

    Kabir, Mariam.;

  • 作者单位

    Yeshiva University.;

  • 授予单位 Yeshiva University.;
  • 学科 Chemistry Biochemistry.;Biophysics General.;Biophysics Medical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 182 p.
  • 总页数 182
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;生物物理学;生物物理学;
  • 关键词

  • 入库时间 2022-08-17 11:38:10

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号