首页> 外文学位 >Electron and nuclear spins in semiconductor quantum dots.
【24h】

Electron and nuclear spins in semiconductor quantum dots.

机译:半导体量子点中的电子和核自旋。

获取原文
获取原文并翻译 | 示例

摘要

The electron and nuclear spin degrees of freedom in two-dimensional semiconductor quantum dots are studied as important resources for such fields as spintronics and quantum information. The coupling of electron spins to their orbital motion, via the spin-orbit interaction, and to nuclear spins, via the hyperfine interaction, are important for understanding spin-dynamics in quantum dot systems. This work is concerned with both of these interactions as they relate to two-dimensional semiconductor quantum dots.;We first consider the spin-orbit interaction in many-electron quantum dots, studying its role in conductance fluctuations. We further explore the creation and destruction of spin-polarized currents by chaotic quantum dots in the strong spin-orbit limit, finding that even without magnetic fields or ferromagnets (i.e., with time reversal symmetry) such systems can produce large spin-polarizations in currents passing through a small number of open channels. We use a density matrix formalism for transport through quantum dots, allowing consideration of currents entangled between different leads, which we show can have larger fluctuations than currents which are not so entangled.;Second, we consider the hyperfine interaction between electrons and approximately 106 nuclei in two-electron double quantum dots. The nuclei in each dot collectively form an effective magnetic field interacting with the electron spins. We show that a procedure originally explored with the intent to polarize the nuclei can also equalize the effective magnetic fields of the nuclei in the two quantum dots or, in other parameter regimes, can cause the effective magnetic fields to have large differences.
机译:二维半导体量子点中的电子和核自旋自由度被研究为自旋电子学和量子信息等领域的重要资源。电子自旋通过自旋-轨道相互作用与它们的轨道运动的耦合,以及通过超精细相互作用与核自旋的耦合,对于理解量子点系统中的自旋动力学很重要。这项工作涉及与二维半导体量子点有关的这两种相互作用。我们首先考虑多电子量子点中的自旋轨道相互作用,研究其在电导涨落中的作用。我们进一步探索了在强自旋轨道极限中由混沌量子点造成的自旋极化电流的产生和破坏,发现即使没有磁场或铁磁体(即具有时间反转对称性),此类系统也会在电流中产生大的自旋极化通过少量的公开渠道。我们使用密度矩阵形式来通过量子点传输,从而考虑了不同导线之间纠缠的电流,这表明与未纠缠的电流相比,其波动可能更大;其次,我们考虑了电子与大约106个原子核之间的超精细相互作用。在两个电子的双量子点中。每个点中的原子核共同形成与电子自旋相互作用的有效磁场。我们表明,最初旨在使原子核极化的过程也可以使两个量子点中的原子核的有效磁场相等,或者在其他参数范围内,也可能导致有效磁场具有较大的差异。

著录项

  • 作者

    Krich, Jacob Jonathan.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号