首页> 外文学位 >A study on productivity enhancement in high-speed, high-precision micromilling processes.
【24h】

A study on productivity enhancement in high-speed, high-precision micromilling processes.

机译:在高速,高精度微铣削过程中提高生产率的研究。

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents a study into the enhancement of productivity in micromilling processes by considering a fundamental treatment of tool path trajectory generation techniques and process optimization strategies that account for the impact of scale effects present in high-speed, high-precision micromachining operations. Micromilling is increasingly applied to the production of a wide variety of micro components, due to its high precision and flexibility. However, the productivity of micromilling is limited by the low feedrates necessitated by the inherent high precision and small feature size. In this study, several scale effects present at the microscale are identified, in particular the increase of the ratio of tool size to feature size, and the corresponding impact on trajectory generation and process optimization is investigated. The scale effects are shown to cause increased geometric error when the standard method of VF-NURBS is applied to microscale feedrate optimization. The method of Enhanced Variable- Feedrate NURBS (EVF-NURBS) is proposed and shown to successfully compensate for the scale effects leading to reduced geometric error. A key contribution of this study is the construction and experimental validation of the Variable-Feedrate Intelligent Segmentation (VFIS) method for increased feedrates and improved stability. The VFIS method provides a cutting time reduction of more than 50% in some cases, while effectively constraining geometric error. Two tool size optimization schemes are presented for maximizing productivity and minimizing geometric error while accounting for dynamic effects uniquely present at the microscale. Finally, the development of a low-cost, high-precision micro-mesoscale machining center (mMC) is presented.
机译:本文通过考虑刀具路径轨迹生成技术的基本处理方法和考虑了高速,高精度微加工操作中的比例效应影响的工艺优化策略,对微铣削加工中的生产率提高进行了研究。由于其高精度和灵活性,微铣削越来越多地应用于各种微零件的生产。但是,微铣削的生产率受到固有的高精度和小尺寸特征所必需的低进给率的限制。在这项研究中,确定了微观尺度上存在的几种尺度效应,特别是工具尺寸与特征尺寸之比的增加,并研究了对轨迹生成和工艺优化的相应影响。当将VF-NURBS的标准方法应用于微尺度进给率优化时,显示出尺度效应会导致几何误差增加。提出并提出了增强型可变进给率NURBS(EVF-NURBS)方法,该方法成功地补偿了比例效应,从而减小了几何误差。这项研究的关键贡献是可变进给率智能分段(VFIS)方法的构建和实验验证,该方法可提高进给率并改善稳定性。 VFIS方法在某些情况下可将切削时间减少50%以上,同时有效地限制了几何误差。提出了两种工具尺寸优化方案,以最大化生产率和最小化几何误差,同时解决微观尺度上唯一存在的动态影响。最后,介绍了一种低成本,高精度的微中尺度加工中心(mMC)的开发。

著录项

  • 作者

    Sodemann, Angela A.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 199 p.
  • 总页数 199
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号