首页> 外文学位 >Model systems for molecular docking: Understanding molecular recognition in polar and charged binding sites.
【24h】

Model systems for molecular docking: Understanding molecular recognition in polar and charged binding sites.

机译:分子对接模型系统:了解极性和带电结合位点的分子识别。

获取原文
获取原文并翻译 | 示例

摘要

Virtual screening is a powerful tool in drug discovery, with the potential to find novel ligands for therapeutically relevant target structures. However, the field is plagued by both false positive and false negative predictions. This is due to approximations within the scoring functions, leading to the failure to distinguish between true ligands and high-ranking nonbinders (decoys). To compound the problem, in a typical target the complexity of the ligand-receptor interactions prevents us from unraveling the many components of the binding energy that lead to the incorrect predictions. Model binding sites provide simpler systems in which individual terms can be isolated and studied.;In Chapter 1, cytochrome c peroxidase (CCP) W191G, an anionic, wet, and buried cavity is introduced. This cavity primarily binds aromatic monocations; dications and most neutral molecules do not bind detectably. In Chapter 2, CCP W191G is included in a series of model systems (the T4 lysozyme L99A hydrophobic and L99A/M102Q polar cavities) to evaluate MM-GBSA rescoring of docking hit lists; both chapters consider the case for CCP W191G where the scoring function must balance the cost of ligand desolvation with the favorable electrostatic interaction energy between ligand and protein.;Chapter 3 returns to the T4 lysozyme L99A/M102Q polar models system for absolute and relative binding free energy predictions. This system proved to be difficult for the free energy methods, but not due to the additional polarity, as we had initially predicted. Instead, protein conformational change, sampling of reasonable ligand orientations and methodological failures proved a challenge to accurate predictions.;In the final chapter, a new open cavity in cytochrome c peroxidase, created by the W191GP190G DeltaG192-A193 deletion mutant is introduced. The cavity contains multiple ordered waters and an interface to bulk solvent. This more complicated cavity presents an opportunity to investigate displacing individual ordered waters, and the potential for neutral ligands in a charged cavity. Implications for this new charged, open cavity and preliminary results are discussed in Chapter 4: Future Directions.
机译:虚拟筛选是药物发现中的有力工具,有可能找到治疗相关靶标结构的新型配体。然而,该领域受到误报和误报预测的困扰。这是由于评分函数内的近似值,导致无法区分真正的配体和高级非结合剂(诱饵)。使问题复杂化的是,在典型的靶标中,配体-受体相互作用的复杂性使我们无法弄清结合能的许多成分,这些成分会导致错误的预测。模型结合位点提供了更简单的系统,可以在其中分离和研究各个术语。在第1章中,介绍了细胞色素C过氧化物酶(CCP)W191G,它是一种阴离子,湿的和埋入的腔。该腔主要结合芳族单阳离子。药物和大多数中性分子无法检测到结合。在第2章中,CCP W191G包含在一系列模型系统中(T4溶菌酶L99A疏水性和L99A / M102Q极性腔),用于评估对接命中列表的MM-GBSA评分;这两章都考虑了CCP W191G的情况,评分功能必须平衡配体去溶剂化的成本与配体与蛋白质之间的良好静电相互作用能之间的平衡。第3章返回T4溶菌酶L99A / M102Q极性模型系统以实现绝对和相对结合自由能量预测。对于自由能方法,该系统被证明是困难的,但并非如我们最初所预测的那样,由于附加极性。取而代之的是,蛋白质构象变化,合理的配体取向取样和方法学失败证明了对准确预测的挑战。在最后一章中,介绍了由W191GP190G DeltaG192-A193缺失突变体创建的细胞色素C过氧化物酶的新开腔。该腔包含多个有序的水和与大量溶剂的界面。这个更复杂的空腔为研究置换单个有序水提供了机会,并为带电空腔中的中性配体提供了潜力。在第4章:未来方向中将讨论这种新的带电,开放腔和初步结果的含义。

著录项

  • 作者

    Boyce, Sarah Emily.;

  • 作者单位

    University of California, San Francisco.;

  • 授予单位 University of California, San Francisco.;
  • 学科 Chemistry Pharmaceutical.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 257 p.
  • 总页数 257
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号