首页> 外文学位 >Dealloyed core-shell platinum-copper nanoparticle electrocatalysts.
【24h】

Dealloyed core-shell platinum-copper nanoparticle electrocatalysts.

机译:脱核的核-壳铂-铜纳米粒子电催化剂。

获取原文
获取原文并翻译 | 示例

摘要

The prospect of Polymer Electrolyte Membrane fuel cells (PEMFCs) producing electricity directly from chemical sources with possibly zero emission makes them attractive as the next generation of power generators for automotives. The key challenges for PEMFCs are sluggish electroreduction of oxygen and high cost of platinum for electrocatalysts. Many Pt-rich alloys had been studied for decades but none meet today's activity targets.;This dissertation reports the discovery and structural and functional characterization of a novel class of Pt bimetallic electrocatalysts that meet today's cost and performance target for PEMFC technology. The active Pt-Cu nanoparticle electrocatalyst is prepared from Cu-rich Pt-Cu precursors. The surface Cu atoms were then selectively dissoluted, resulting in Pt-enriched surfaces. Electrocatalytic testing revealed unprecedented activities for electroreduction of oxygen of these Pt-Cu nanoparticles.;Compositional and structural analyses resulted in a core-shell hypothesis suggesting a Pt-rich shell surrounding Pt-Cu core. A lattice strain hypothesis was put forth based on the assumption that Cu in particle core causes shorter Pt-Pt interatomic distances in the Pt-shell as surface Cu atoms were removed. Previous Density Functional Theory calculation revealed that compressive lattice strain caused metal d-bands to downshift, weakening metal-adsorbate bond strength. Since pure Pt binds oxygen too strongly thus poisoning the active surface, weaker adsorption strength enhances oxygen reduction reaction rates.;Compressive lattice strain in the activated Pt-Cu core-shell nanoparticles was experimentally observed with Anomalous X-ray Diffraction (AXRD) and quantified using a core-shell model. Activities of the activated core-shell Pt-Cu were correlated with corresponding lattice strain for various Pt-Cu precursors. This resulted in a volcano-shaped relation in accordance with theoretical Density Functional Theory (DFT) calculation. Higher Cu content in the precursor causes higher compressive strain and catalytic activities. That composition and thickness of Pt-shell in the particles is controllable experimentally offers a unique feasibility for tuning electrocatalytic activities of Pt-Cu electrocatalysts.;Further characterization addressed the effects of compositions and synthesis conditions on catalytic activity. Higher annealing temperatures showed more significant effects on precursor structure and activities than longer annealing durations. Aging studies of Pt-Cu precursors in the form of powder, film and catalyst ink showed good stability of powders and inks.
机译:高分子电解质膜燃料电池(PEMFC)直接从化学源产生电能(可能为零排放)的前景使它们成为下一代汽车用发电机具有吸引力。 PEMFC的主要挑战是氧气的缓慢还原和电催化剂铂的高成本。已经研究了许多富含Pt的合金数十年,但没有一个能够满足当今的活性目标。本论文报道了满足当今PEMFC技术成本和性能目标的新型Pt双金属电催化剂的发现,结构和功能表征。活性Pt-Cu纳米粒子电催化剂是由富含Cu的Pt-Cu前体制备的。然后将表面的Cu原子选择性地分解,形成富Pt的表面。电催化测试显示了这些Pt-Cu纳米粒子的氧电还原具有空前的活性。;组成和结构分析得出了核-壳​​假说,表明围绕Pt-Cu核的富含Pt的壳。根据以下假设提出晶格应变假说:颗粒核心中的Cu随着表面Cu原子被去除而在Pt壳中导致较短的Pt-Pt原子间距离。先前的密度泛函理论计算表明,压缩晶格应变会导致金属d波段下移,从而削弱金属与被吸附物的结合强度。由于纯Pt太强地结合了氧气,从而使活性表面中毒,较弱的吸附强度提高了氧气还原反应的速率。;使用异常X射线衍射(AXRD)实验观察了活化的Pt-Cu核-壳纳米颗粒中的压缩晶格应变并进行了定量使用核壳模型。活化的核-壳Pt-Cu的活性与各种Pt-Cu前体的相应晶格应变相关。根据理论密度泛函理论(DFT)计算得出了火山形状的关系。前体中较高的Cu含量会导致较高的压缩应变和催化活性。颗粒中Pt壳的组成和厚度可通过实验控制,为调节Pt-Cu电催化剂的电催化活性提供了独特的可行性。进一步的表征解决了组成和合成条件对催化活性的影响。较高的退火温度比较长的退火时间对前驱物的结构和活性有更大的影响。粉末,薄膜和催化剂墨水形式的Pt-Cu前体的老化研究表明粉末和墨水具有良好的稳定性。

著录项

  • 作者

    Koh, Shirlaine.;

  • 作者单位

    University of Houston.;

  • 授予单位 University of Houston.;
  • 学科 Engineering Chemical.;Energy.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 218 p.
  • 总页数 218
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号