首页> 外文学位 >Investigation of the structure and function of type III secretion needle and tip proteins.
【24h】

Investigation of the structure and function of type III secretion needle and tip proteins.

机译:研究III型分泌针和尖端蛋白的结构和功能。

获取原文
获取原文并翻译 | 示例

摘要

Many Gram-negative pathogens possess type III secretion systems as part of their required virulence factor repertoire. The type III secretion apparatus (TTSA) spans the bacterial inner and outer membranes and resembles a syringe and a needle. It is used to inject proteins into a host cell's membrane and cytoplasm to subvert normal cellular processes. The external portion of the TTSA is a needle that is composed of a single type of protein that is polymerized in a helical fashion to form an elongated tube with a central channel that is 2--3 nm in diameter. We report the first structure of a TTSA needle protein called BsaL from Burkholderia pseudomallei determined by nuclear magnetic resonance (NMR) spectroscopy. The central part of the protein assumes a helix-turn-helix core domain with two well-defined alpha-helices that are joined by a four-residue linker. Residues that flank this presumably exposed core region are not completely disordered, but adopt a partial helical conformation. The atomic structure of BsaL and its sequence homology with other TTSA needle proteins suggest potentially unique structural dynamics that could be linked with a universal mechanism for control of type III secretion in diverse Gram-negative bacterial pathogens.;The pathogenesis of Shigella flexneri requires a functional TTSA to inject host-altering effector proteins directly into the targeted cell. The TTSA exposed needle is an extended polymer of MxiH. Invasion plasmid antigen D (IpaD) resides at the tip of the needle to control Shigella type III secretion. IpaD (36.6 kDa) has a dumbbell shape with two globular domains flanking a central coiled-coil that stabilizes the protein. Known structures of IpaD homologs (LcrV from Yersinia and BipD from Burkholderia) all have a similar overall shape. We have identified key MxiH residues located in its PSNP loop and the contiguous surface that uniquely contribute to the formation of the IpaD-needle interface as determined by NMR chemical shift mapping. Mutation of some of these MxiH residues severely affects the stable maintenance of IpaD at the Shigella surface and thus compromises the invasive phenotype. Other residues could be mutated to give rise to intermediate phenotypes, suggesting they have a role in tip complex stabilization while not being essential for tip complex formation. Initial in vitro fluorescence polarization (FP) studies confirmed that specific amino acid changes adversely affect the MxiH-IpaD interaction. Meanwhile, none of the mutations appeared to have a negative effect on the MxiH-MxiH interactions required for efficient needle assembly.;We recently demonstrated that bile salts stimulate recruitment of the translocator protein IpaB to the Shigella surface where it stably resides with IpaD at the TTSA needle tip. This process appears to be initiated by a direct interaction between the bile salt and IpaD. FP studies showed that the bile salt deoxycholate (DOC) binds to IpaD. NMR spectroscopy confirms a DOC-IpaD interaction and suggests that the IpaD conformation changes upon DOC binding. We have identified key IpaD residues that appear to contribute to the formation of the IpaD-DOC interface. DOC appears to bind at the middle of the IpaD coiled-coil where the top of the N-terminal globular domain packs against the coiled-coil. Several IpaD residues in the distal globular domain are also perturbed upon the binding of DOC, suggesting an overall conformational change, which may lead to the recruitment of translocator protein IpaB to the needle tip. Mutation of some of these perturbed residues affects the ability of IpaD to recruit IpaB to the bacterial surface and thus impacts the invasive phenotype of S. flexneri.
机译:许多革兰氏阴性病原体具有III型分泌系统,这是其所需毒力因子库中的一部分。 III型分泌设备(TTSA)横跨细菌的内膜和外膜,类似于注射器和针头。它用于将蛋白质注射到宿主细胞的膜和细胞质中,以破坏正常的细胞过程。 TTSA的外部是一个针,该针由单一类型的蛋白质组成,该蛋白质以螺旋方式聚合形成一个直径为2--3 nm的中心通道的细长管。我们报告了由核磁共振(NMR)光谱确定的伯克霍尔德菌假体的TTSA针状蛋白称为BsaL的第一个结构。蛋白质的中心部分假定为螺旋-转-螺旋核心结构域,具有两个明确定义的α-螺旋,由四个残基的接头连接。在这个大概暴露的核心区域侧翼的残基不是完全无序的,而是采用部分螺旋构象。 BsaL的原子结构及其与其他TTSA针蛋白的序列同源性表明潜在的独特结构动力学可能与控制多种革兰氏阴性细菌病原体中III型分泌的通用机制有关。;弗氏志贺氏菌的发病机理需要功能性TTSA将改变宿主的效应子蛋白直接注入目标细胞。暴露于TTSA的针是MxiH的延伸聚合物。侵染质粒抗原D(IpaD)位于针尖,以控制志贺氏菌III型分泌。 IpaD(36.6 kDa)呈哑铃状,带有两个球形结构域,两侧是稳定该蛋白质的中央卷曲螺旋。 IpaD同源物的已知结构(耶尔森氏菌的LcrV和伯克霍尔德菌的BipD)都具有相似的总体形状。我们已经确定了位于其PSNP环和连续表面中的关键MxiH残基,这些残基通过NMR化学位移图谱确定了对IpaD针界面形成的独特贡献。这些MxiH残基中的一些突变会严重影响志贺氏菌表面IpaD的稳定维持,从而损害侵袭性表型。其他残基可能会发生突变以产生中间表型,表明它们在尖端复合物的稳定中具有作用,而对于尖端复合物的形成不是必需的。最初的体外荧光偏振(FP)研究证实,特定氨基酸的变化会对MxiH-IpaD相互作用产生不利影响。同时,这些突变似乎均未对有效的针头组装所需的MxiH-MxiH相互作用产生负面影响。;我们最近证明,胆盐可刺激易位蛋白IpaB募集到志贺氏菌表面,并与IpaD稳定存在于志贺菌表面。 TTSA针尖。该过程似乎是由胆盐和IpaD之间的直接相互作用引发的。 FP研究表明,胆汁盐脱氧胆酸盐(DOC)与IpaD结合。 NMR光谱证实了DOC-IpaD相互作用,并暗示了DOC结合后IpaD构象发生变化。我们已经确定了关键的IpaD残基,这些残基似乎有助于IpaD-DOC接口的形成。 DOC似乎结合在IpaD卷曲螺旋的中间,在此处N末端球状结构域的顶部紧靠卷曲螺旋。 DOC结合后,远端球状结构域中的几个IpaD残基也受到干扰,表明整体构象变化,这可能导致易位蛋白IpaB募集到针尖。这些扰动残基中的一些突变会影响IpaD将IpaB募集到细菌表面的能力,从而影响弗氏链球菌的侵入表型。

著录项

  • 作者

    Zhang, Lingling.;

  • 作者单位

    University of Kansas.;

  • 授予单位 University of Kansas.;
  • 学科 Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号