首页> 外文学位 >A Multi-Scale Fluidic Platform for the Study of Dendrite-Mediated Cell Communication
【24h】

A Multi-Scale Fluidic Platform for the Study of Dendrite-Mediated Cell Communication

机译:用于研究树突介导的细胞通讯的多尺度流体平台。

获取原文
获取原文并翻译 | 示例

摘要

Engineered fluidic platforms recapitulate cellular environments, and enable readily controlled and observed cell interrogation and response. Functional microfluidic devices mimic native tissue geometry, topography, and/or chemical signaling. Measuring cell response to mechanical and chemical stimuli in vitro is a critical step toward understanding in vivo cell behaviors. Utilizing systems that precisely control these stimuli and mimic the pericellular space in which cells exist provides insight into cell-cell communication in health and disease. Cells that possess and communicate via dendrites present a unique set of environmental constraints that can be evaluated by specialized fluidic systems. These include dendritic cells of the immune system, neurons and glia of the nervous system, and osteocytes in bone. For these cell models, confined pericellular space and cell interconnectivity are fundamental aspects of device design.;In this work, we used fluidic systems to investigate cell-cell communication between dendrite-possessing cells. Preliminary studies examined how cell contact impacts the chemotaxis of neuronal- and glial-derived cells. Initial results demonstrated a need for a new fluidic platform to enable micro and nanoscale examination of cell-cell communication. The Macro-micro-nano (Mmicron) platform was developed to model and control small molecule diffusion between discrete cell populations. This system was particularly suited for osteocytes, as the micro-to-nanoscale features recapitulate the mineral-encased osteocyte network, known as the lacunar-canalicular system (LCS).;The Mmicron system is a novel, more physiologically relevant tool to examine the communication of osteocytes and other dendrite-possessing cells. Osteocytes within the Mmicron approximate the dendritic morphology of native osteocytes within the LCS, forming elongated, nanoscale processes, which communicate via functional gap junctions. Additionally, osteocytes exposed to heat stress in one compartment of the Mmicron were shown to predictably undergo apoptosis, release ATP through Pannexin 1 membrane channels, and induce RANKL upregulation in bystander osteocytes. RANKL upregulation was dependent on ATP binding to P2X7 receptors within the opposing compartment of the Mmicron. By parsing the components of osteocyte apoptosis as a chemical trigger for bone remodeling, the Mmicron system will further elucidate bone function and facilitate development of treatments with increased pharmacologic specificity for bone deficiency diseases, such as osteoporosis.
机译:工程化的流体平台概括了细胞环境,并能够轻松控制和观察细胞质询和反应。功能性微流体装置模仿天然组织的几何形状,形貌和/或化学信号。在体外测量细胞对机械和化学刺激的反应是了解体内细胞行为的关键步骤。利用精确控制这些刺激并模仿细胞存在的细胞周围空间的系统,可以深入了解健康和疾病中的细胞间通讯。具有树突并通过树突通讯的细胞呈现出一组独特的环境限制条件,可以通过专门的流体系统进行评估。这些包括免疫系统的树突状细胞,神经系统的神经元和神经胶质以及骨中的骨细胞。对于这些细胞模型,有限的细胞周围空间和细胞相互连通性是设备设计的基本方面。在这项工作中,我们使用流体系统研究拥有树突的细胞之间的细胞-细胞通讯。初步研究检查了细胞接触如何影响神经元和神经胶质细胞的趋化性。初步结果表明,需要一种新的流体平台,以实现细胞间通讯的微米和纳米级检查。开发了Macro-micro-nano(Mmicron)平台,以建模和控制离散细胞群体之间的小分子扩散。该系统特别适用于骨细胞,因为微米到纳米尺度的特征概括了矿物质包裹的骨细胞网络,称为腔隙管系统(LCS)。Mmicron系统是一种新颖的,更具生理相关性的工具,可以检查骨细胞和其他具有树突的细胞的通讯。 Mmicron内的骨细胞近似于LCS内天然骨细胞的树突形态,形成细长的纳米级过程,它们通过功能性间隙连接进行通信。此外,暴露于Mmicron的一个隔室中的热应激下的骨细胞显示可预测地发生凋亡,通过Pannexin 1膜通道释放ATP,并诱导旁观者骨细胞中的RANKL上调。 RANKL的上调取决于ATP与Mmicron相对隔室内的P2X7受体的结合。通过将骨细胞凋亡的成分解析为骨骼重塑的化学触发因素,Mmicron系统将进一步阐明骨骼功能,并促进针对骨质疏松症等骨病的药理学特异性提高的治疗方法的开发。

著录项

  • 作者

    McCutcheon, Sean.;

  • 作者单位

    The City College of New York.;

  • 授予单位 The City College of New York.;
  • 学科 Biomedical engineering.;Bioengineering.;Engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号