首页> 外文学位 >Estimation and control of jump stochastic systems.
【24h】

Estimation and control of jump stochastic systems.

机译:跳跃随机系统的估计和控制。

获取原文
获取原文并翻译 | 示例

摘要

This thesis deals with the estimation and control of jump stochastic systems as a result of the novel proposition of a framework based on switching hidden modes to enhance the treatment of uncertainty within the process control field. This thesis begins with the realistic modeling of non-stationary disturbance signals typically witnessed in process industries. Such disturbances are characterized by probabilistic switches between distinct regimes. To capture the effect of such multiple modes, a Hidden Markov Model (HMM) framework is employed. The main disturbance patterns of concern considered in this thesis include intermittent drifts and abrupt jumps. The main idea is to superimpose a Markov chain, whose parameters govern the latent temporal regime transitions on top of a discrete-time equation that governs the underlying system dynamics to generate a (concatenated) Markov Jump System (MJS). Several examples are given in the thesis which demonstrate the usefulness of the HMM framework in the context of describing an array of disturbance patterns, providing integral action and the provision for model-based fault detection. The main contribution is practical in that with the adoption of a more sophisticated disturbance model, and the consequential use of an existing state estimator suited for MJS's, superior tracking performance is possible. Enhanced closed-loop control, without having to re-design the controller (which remains as MPC for this part of the thesis), is the result.;Having dealt with the issue of modeling, the thesis then proceeds to the optimal control of stochastic systems, including the aforementioned jump systems. The control framework employed is Approximate Dynamic Programming (ADP) based on a "post-decision state", as opposed to the more common "pre-decision" state. ADP is a promising framework for systematically and practically obtaining good closed-loop policies for multi-stage, stochastic control problems. The main advantage of ADP over MPC is the former's ability to account for uncertainty in a systematic fashion. Furthermore, for ADP, the bulk of the computation burden is shifted off-line (during a process termed Value Iteration (VI), via which "value-functions" are computed). Online computations are oftentimes swifter, since the solution to a single-stage optimization problem (as opposed to a multi-stage one, in the case of MPC) is required. The contributions in this part of the thesis are multi-fold.;Most previous works on ADP, as applied in the context of process control, have focused on solving deterministic problems. For stochastic control problems, the pre-decision ADP formulation involves a computationally cumbersome optimization over an expected quantity during on-line and off-line calculations. Through the use of the post-decision state, the typically non-commutative optimization and expectation operations are interchanged to yield an equivalent problem. The post-decision stage formulation also allows the effcient use of off-the-shelf optimization solvers which form the cornerstone of MPC technology. A further benefit is that off-line VI calculations may be run in parallel. This thesis extends previous ADP methodologies (involving simulations to uncover relevant parts, over which VI is performed, of the state-space and function approximation) to the post-decision analogue.;The proposed post-decision-state-based ADP approach is demonstrated on but not limited to the control of stochastic jump systems. Several examples are used to demonstrate the algorithm and to highlight the inadequacy of MPC (and/or other popular control methodologies) in providing good closed-loop control due to its ad-hoc treatment of uncertainty. These examples include a dual control problem (of an integrator with an unknown gain) and a case study highlighting the importance of considering the oftentimes over-looked interaction between state-estimation and control. Another example is one of a constrained double integrator, where MPC leads to frequent violations of the constraints due to unbounded prediction errors. The last pertains to a bioreactor chemostat where the aim of maximizing productivity whilst ensuring high conversion results in operations at the constraint boundary. The proposed ADP solution is able to automatically "back-off" from the constraint boundary in the face of disturbances. (Abstract shortened by UMI.)
机译:由于基于切换隐藏模式以增强过程控制领域内对不确定性的处理的框架的新颖命题,本文研究了跳跃随机系统的估计和控制。本文从过程工业中通常观察到的非平稳干扰信号的现实建模开始。这种干扰的特征在于不同机制之间的概率切换。为了捕获这种多种模式的效果,采用了隐马尔可夫模型(HMM)框架。本文考虑的主要扰动模式包括间歇性漂移和突然跳跃。主要思想是叠加马尔可夫链,其参数控制潜在的时态过渡在离散时间方程式的顶部,该离散时间方程式控制底层系统动力学以生成(连接的)马尔可夫跳跃系统(MJS)。论文中给出了几个例子,这些例子展示了HMM框架在描述一系列扰动模式,提供整体作用以及为基于模型的故障检测提供服务的背景下的有用性。主要的贡献是实用的,因为采用了更复杂的干扰模型,并且相应地使用了适合MJS的现有状态估计器,便可以实现出色的跟踪性能。结果是增强了闭环控制,而无需重新设计控制器(在本部分中仍为MPC)。;在处理了建模问题之后,论文便进行了随机最优控制。系统,包括上述的跳跃系统。所采用的控制框架是基于“决策后状态”的近似动态编程(ADP),与更常见的“决策前状态”相反。 ADP是一个有前途的框架,可用于系统地和实际地获得针对多阶段随机控制问题的良好闭环策略。与MPC相比,ADP的主要优势在于前者能够以系统的方式解决不确定性。此外,对于ADP,大量的计算负担被脱机转移(在称为“值迭代”(VI)的过程中,通过该过程计算“值函数”)。在线计算通常更快,因为需要解决单阶段优化问题(与MPC相比,是多阶段优化问题)。论文的这一部分做出了多方面的贡献。在过程控制的背景下,以前关于ADP的大多数研究都集中在解决确定性问题上。对于随机控制问题,在在线和离线计算过程中,预先确定的ADP公式涉及对预期数量的计算繁琐的优化。通过使用决策后状态,通常的非交换优化和期望操作将互换以产生等效问题。决策后阶段的制定还可以有效利用现成的优化求解器,这些求解器构成了MPC技术的基石。另一个好处是离线VI计算可以并行进行。本文将先前的ADP方法(涉及模拟以发现执行VI的状态空间和函数逼近的相关部分)扩展到决策后模拟。;论证了建议的基于决策后状态的ADP方法在但不限于控制随机跳跃系统。使用几个示例来演示该算法,并突出显示MPC(和/或其他流行的控制方法)由于其对不确定性的特殊处理而无法提供良好的闭环控制。这些示例包括一个双重控制问题(增益未知的积分器)和一个案例研究,突出了考虑状态估计与控制之间经常被忽视的相互作用的重要性。另一个示例是约束双积分器之一,其中MPC由于无界的预测误差而导致频繁违反约束。最后一种涉及生物反应器的恒化器,其目的是在最大化生产率的同时确保高转化率,从而在限制边界进行操作。所提出的ADP解决方案能够在遇到干扰时自动从约束边界“退避”。 (摘要由UMI缩短。)

著录项

  • 作者

    Wong, Wee Chin.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Chemical.;Engineering System Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号