首页> 外文学位 >Application of Shark Skin Flow Control Techniques to Airflow
【24h】

Application of Shark Skin Flow Control Techniques to Airflow

机译:鲨鱼皮流控制技术在气流中的应用

获取原文
获取原文并翻译 | 示例

摘要

Due to millions of years of evolution, sharks have evolved to become quick and efficient ocean apex predators. Shark skin is made up of millions of microscopic scales, or denticles, that are approximately 0.2 mm in size. Scales located on the shark's body where separation control is paramount (such as behind the gills or the trailing edge of the pectoral fin) are capable of bristling. These scales are hypothesized to act as a flow control mechanism capable of being passively actuated by reversed flow. It is believed that shark scales are strategically sized to interact with the lower 5% of a boundary layer, where reversed flow occurs at the onset of boundary layer separation. Previous research has shown shark skin to be capable of controlling separation in water. This thesis aims to investigate the same passive flow control techniques in air.;To investigate this phenomenon, several sets of microflaps were designed and manufactured with a 3D printer. The microflaps were designed in both 2D (rectangular) and 3D (mirroring shark scale geometry) variants. These microflaps were placed in a low-speed wind tunnel in the lower 5% of the boundary layer. Solid fences and a flat plate diffuser with suction were placed in the tunnel to create different separated flow regions. A hot film probe was used to measure velocity magnitude in the streamwise plane of the separated regions. The results showed that low-speed airflow is capable of bristling objects in the boundary layer. When placed in a region of reverse flow, the microflaps were passively actuated. Microflaps fluctuated between bristled and flat states in reverse flow regions located close to the reattachment zone.
机译:由于数百万年的进化,鲨鱼已经发展成为快速高效的海洋先头动物。鲨鱼皮由数百万个鳞片或细齿组成,其大小约为0.2毫米。位于鲨鱼身体上且控制分离至关重要的鳞片(例如the的后面或胸鳍的后缘)能够发出鬃毛。假定这些刻度尺充当能够通过反向流动被动地致动的流量控制机构。据信,鲨鱼鳞片的大小具有战略意义,可以与边界层的下5%相互作用,在边界层分离开始时发生逆流。先前的研究表明,鲨鱼皮能够控制水中的分离。本文旨在研究相同的空气被动流量控制技术。为了研究这种现象,使用3D打印机设计和制造了几套微瓣。微型襟翼设计为2D(矩形)和3D(镜像鲨鱼鳞几何)变体。将这些微瓣放在边界层下部5%的低速风洞中。将坚固的栅栏和带吸力的平板扩散器放置在隧道中,以创建不同的分隔流动区域。使用热膜探针来测量分离区域的流向平面中的速度大小。结果表明,低速气流能够吹拂边界层中的物体。当放置在逆流区域时,微瓣被被动驱动。在靠近重新连接区的反向流动区域中,微瓣在刚毛状态和平坦状态之间波动。

著录项

  • 作者

    Morris, Jackson Alexander.;

  • 作者单位

    The University of Alabama.;

  • 授予单位 The University of Alabama.;
  • 学科 Aerospace engineering.;Engineering.
  • 学位 M.S.
  • 年度 2017
  • 页码 105 p.
  • 总页数 105
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号