首页> 外文学位 >Development and Characterization of Liquid Crystal-Gold Nanoparticle Hybrid Materials for Optical Applications
【24h】

Development and Characterization of Liquid Crystal-Gold Nanoparticle Hybrid Materials for Optical Applications

机译:光学用液晶金纳米颗粒杂化材料的开发与表征

获取原文
获取原文并翻译 | 示例

摘要

Hybrid material, mixtures of two or more materials with new properties, represents an exciting class of new materials for a variety of potential applications such as displays, optoelectronics, and sensors due to their unique physical and optical properties. The scope of this dissertation is to produce two new plasmonic applications by combining liquid crystals with gold nanoparticles. The first application is gold nanoparticle coated liquid crystal thin film. Most liquid crystal (LC) thin films require external voltage to reorient LC molecules. Recent advances in optical controlling technology of LC molecule behavior, resulting in the reduction of energy consumption, have stimulated research and development of new LC thin films. In order to re-orient LC molecules by just using light, the common approach is to include either a photo-responsive LC host, one that require high power light and severely narrows the range of usable materials, or add photo-active dye or polymer layer, photodegradation over time. Our work designing an all-optical method for LC re-orientation that overcomes all the limitations mentioned above. We have successfully both in- and out-of-plane spatial orientation of nematic liquid crystal (LC) molecules by leveraging the highly localized electric fields produced in the near-field regime of a gold nanoparticle (AuNP) layer. This re-orientation of LC molecules in thin LC-AuNP film is all-optical, driven by a small resonance excitation power with the localized surface plasmon absorption of the AuNPs at room temperature. The second application is LC mediated nano-assembled gold microcapsules. This application has a potential in controlled-release cargo-style delivery system. Targeted delivery systems with controlled release mechanisms have been the subject of extensive research more than fifty years. One is to control the release process remotely by using optical excitation. Optical actuation of delivery capsules, which plasmonic nanoparticle such as gold, allows rapid release at specific locations and uses the photothermal effect to unload contents. Almost all gold-based delivery applications including Au coated nanocrystals or AuNPs with soft materials like gels and polymers are not suitable for control release applications in real life since these applications do not provide robust leakage-free containment lower than the American National Standards Institute (ANSI) maximum permissible light exposure limit. We have successfully managed the difficulties mentioned above and produced a new gold-based delivery application. The application is spherical capsules with a densely packed wall of AuNPs. The rigid capsule wall allows encapsulation of cargo that can be contained, virtually leakage-free, over several months. Further, by leveraging LSPR of AuNPs, we can rupture the microshells using optical excitation with ultralow power (< 2 mW), controllably and rapidly releasing the encapsulated contents in less than 5 seconds. Our results exhibiting the capture and optically regulated release of encapsulated substances are a novel platform that combines controlled-release cargo-style delivery and photothermal therapy in one versatile and multifunctional unit. Both our applications are overcoming current limitations and promising future research directions towards the next generation of LC-AuNPs hybrid material research and developments.
机译:混合材料是两种或多种具有新特性的材料的混合物,由于其独特的物理和光学特性,它们代表了令人兴奋的一类新材料,可用于各种潜在应用,例如显示器,光电和传感器。本论文的范围是通过将液晶与金纳米颗粒结合而产生两种新的等离子体应用。第一种应用是金纳米颗粒涂覆的液晶薄膜。大多数液晶(LC)薄膜都需要外部电压来重新定向LC分子。 LC分子行为的光学控制技术的最新进展可降低能耗,从而刺激了新型LC薄膜的研究和开发。为了仅通过使用光来重新定向LC分子,通常的方法是包括一个光响应LC主体,该主体需要高功率的光并严重缩小可用材料的范围,或者添加光敏染料或聚合物层,随着时间的推移会发生光降解。我们的工作设计了一种用于LC重新定向的全光学方法,该方法克服了上述所有限制。通过利用金纳米粒子(AuNP)层近场结构中产生的高度局部电场,我们已经成功地实现了向列液晶(LC)分子的面内和面外空间取向。 LC-AuNP薄膜中LC分子的这种重新取向是全光学的,由室温下AuNPs的局部表面等离子体吸收引起的小共振激发功率驱动。第二个应用是LC介导的纳米组装金微胶囊。该应用在控释货物式输送系统中具有潜力。五十多年来,具有控释机制的靶向递送系统一直是广泛研究的主题。一种是通过使用光激发来远程控制释放过程。诸如金之类的等离子体纳米颗粒的递送胶囊的光学致动允许在特定位置快速释放并利用光热效应来卸载内容物。几乎所有的金基交付应用,包括带有金质涂层的纳米晶体或具有诸如凝胶和聚合物之类的软质材料的AuNP,都不适合现实生活中的控制释放应用,因为这些应用不能提供低于美国国家标准协会(ANSI)的坚固无泄漏容器)最大允许的曝光极限。我们已经成功解决了上述困难,并开发了新的基于黄金的交付应用程序。该应用是具有紧密堆积的AuNPs壁的球形胶囊。坚硬的囊壁可以将可容纳的货物封装几个月,几乎没有泄漏。此外,通过利用AuNPs的LSPR,我们可以使用具有超低功率(<2 mW)的光激发来破裂微壳,可控地并在不到5秒的时间内迅速释放出封装的内容物。我们的研究结果显示了被包封物质的捕获和光学调节释放是一个新颖的平台,该平台将控释货物式递送和光热疗法结合在一个多功能和多功能单元中。我们的两种应用都克服了当前的局限性,并有望为下一代LC-AuNPs杂化材料的研究和开发提供未来的研究方向。

著录项

  • 作者

    Quint, Makiko T.;

  • 作者单位

    University of California, Merced.;

  • 授予单位 University of California, Merced.;
  • 学科 Materials science.;Nanotechnology.;Physics.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 165 p.
  • 总页数 165
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号