首页> 外文学位 >Designing Polymeric Materials with Enhanced Thermal Transport and Tailored Thermo-Responsive Properties
【24h】

Designing Polymeric Materials with Enhanced Thermal Transport and Tailored Thermo-Responsive Properties

机译:设计具有增强的热传递和量身定制的热响应特性的聚合物材料

获取原文
获取原文并翻译 | 示例

摘要

Polymers afford modular molecular designing thereby allowing development of polymeric materials with precisely tailored intrinsic properties as well as response to neighboring environment. This dissertation discusses molecular design strategies to develop amorphous polymers with enhanced thermal transport properties, and a bi-functional polymer-based nanocomposite with thermally tunable behavior.;In the first part, strategies to modulate polymer chain morphology, inter-chain interactions, and chain packing are explored to develop amorphous polymers with high thermal conductivities. The first system consists of a polymer blend of two mutually hydrogen-bonding polymers: one, a H-bond donor polymer with long flexible chains mixed with the second H-bond acceptor polymer with short and rigid chains. A high concentration of strong and homogeneously distributed H-bonds results in a locally extended morphology of the long flexible polymer and creates a percolating network of efficient thermal connections. In this system, thermal conductivity reaching up to 1.72 W/mK was achieved for nanoscale films, which is nearly an order of magnitude higher than that of typical amorphous polymers. In the second system of a weak polyelectrolyte, controlled ionization results in electrostatically-induced extended chain morphology, more compact chain packing, and chain stiffening which together promote enhanced thermal transport. In a system with predominantly ionized (∼90%) chains, thermal conductivity reached up to 1.17 W/mK for nanoscale films, which was nearly 3.5 times higher than that in a completely unionized polyelectrolyte film (0.34 W/mK). Furthermore, thermal conductivities up to 0.62 W/mK was achieved in micrometer-thick films. Overall, the two strategies discussed in this dissertation present a significant breakthrough in molecular engineering of polymers to realize high thermal conductivities in amorphous systems.;In the second part, a unique polymer-graphene oxide (GO) nanocomposite film-based planar microfluidic device is presented. The fabricated devices were used for sorting circulating tumor cells (CTCs) by their on-demand capture within the device and their subsequent release. The polymer provides a thermally tunable capture or release functionality and acts as the matrix to hold the functionalized GO sheets, which in turn are the scaffolds for the cell-capturing anti-EpCAM antibodies. Combining the temperature-sensitive modality of the polymer with the sensitive GO-mediated cell capture functionality yields a device that enables the study of CTCs without many of the shortcomings of the past technologies. At room temperature, the device captured more than 80% of the CTCs at flow rates of 1-3 mL/h, and released more than 90% of the captured cells on cooling below the polymer's lower critical solution temperature. Easy operationability of the devices affords their deployment for processing of clinical samples. Viable and structurally intact CTCs were successfully isolated from 10 out of the 13 metastatic breast and pancreatic cancer patient blood samples processed. The CTCs isolated from the blood samples of metastatic breast cancer patients were further analyzed by fluorescence in situ hybridization (FISH), a standard cytogenetic technique. Successful isolation of viable CTCs from clinical samples thus highlights the utility of the fabricated device in research and clinical settings.
机译:聚合物提供了模块化的分子设计,从而允许开发具有精确定制的固有特性以及对周围环境的响应的聚合物材料。本文讨论了分子设计策略,以开发具有增强的热传输性能的无定形聚合物,以及具有热可调性的双功能聚合物基纳米复合材料。第一部分,调节聚合物链形态,链间相互作用和链的策略研究填料以开发具有高导热率的无定形聚合物。第一种体系由两种相互氢键键合的聚合物的共混物组成:一种是具有长柔性链的H键供体聚合物,第二种是具有短而刚性链的H键受体聚合物。高浓度的强且均匀分布的H键会导致长形柔性聚合物的局部扩展形貌,并形成有效热连接的渗滤网络。在该系统中,纳米级薄膜的热导率达到了1.72 W / mK,比典型的非晶态聚合物的热导率高出近一个数量级。在弱聚电解质的第二种系统中,受控的电离会导致静电诱导的延伸链形态,更紧密的链堆积和链硬化,共同促进增强的热传输。在具有主要离子化(约90%)链的系统中,纳米级薄膜的热导率达到1.17 W / mK,这是完全电离的聚电解质薄膜(0.34 W / mK)的近3.5倍。此外,在微米厚的薄膜中实现了高达0.62 W / mK的热导率。总体而言,本文讨论的两种策略在聚合物分子工程方面实现了重大突破,以实现非晶态系统中的高导热性。第二部分,一种独特的基于聚合物-氧化石墨烯(GO)纳米复合薄膜的平面微流控器件提出了。所制造的装置通过按需捕获在装置中并随后释放而用于对循环肿瘤细胞(CTC)进行分类。该聚合物提供了可热调节的捕获或释放功能,并充当基质来固定功能化的GO片,而GO片又是捕获细胞的抗EpCAM抗体的支架。将聚合物对温度敏感的模态与敏感的GO介导的细胞捕获功能相结合,可以生产出一种能够研究CTC的设备,而没有过去技术的许多缺点。在室温下,该设备以1-3 mL / h的流速捕获了80%以上的四氯化碳,并在低于聚合物的较低临界溶液温度冷却时释放了90%以上的捕获细胞。设备的易操作性使其可用于临床样品的处理。从所处理的13例转移性乳腺癌和胰腺癌患者血液样本中的10份中成功分离出了可行且结构完整的CTC。从转移性乳腺癌患者血液样本中分离出的四氯化碳通过荧光原位杂交(FISH)(一种标准的细胞遗传学技术)进行了进一步分析。从临床样品中成功分离出可行的四氯化碳,从而突出了该装置在研究和临床环境中的实用性。

著录项

  • 作者

    Shanker, Apoorv.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Physical chemistry.;Polymer chemistry.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:54:20

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号