首页> 外文学位 >Estimation of the mass center and dynamics of a spherical test mass for gravitational reference sensors.
【24h】

Estimation of the mass center and dynamics of a spherical test mass for gravitational reference sensors.

机译:重力参考传感器的质心估计和球形测试质量的动力学。

获取原文
获取原文并翻译 | 示例

摘要

Exciting new fields of physics and precision inertial navigation can be realized by reducing test mass disturbances in drag-free spacecraft orders of magnitude below what has currently been demonstrated. The mass center of an ideal drag-free test mass is a reference point traveling along a pure geodesic. The purpose of the drag-free spacecraft is to shield the test mass from all external disturbances, and at the same time, not to introduce additional disturbances. A sphere has the advantage of invariance of orientation. A spherical test mass, therefore, requires no forcing on the part of the spacecraft to control the test mass orientation. With the need for actuation eliminated, the gap between the test mass and spacecraft can be opened up to sizes on the order of the sphere's radius. Elimination of test mass forcing and a large gap reduces, or all together eliminates, the largest disturbances acting on the test mass. Furthermore, spinning the sphere can spectrally shift body-fixed features to frequencies that do-not interfere with the drag-free control or the science mission. The angular momentum vector of the spinning sphere is a quantity that is robust against residual torques providing an orientation reference for the local inertial frame.;In this dissertation a generic model for the output of a drag-free sensor with a spinning spherical test mass is developed. A measurable feature of the test mass (surface geometry with respect to the mass center, magnetic potential, etc.) is written as an expansion in spherical harmonics. The rigid body motion of the test mass relative to the sensor is assumed to obey Euler's equations on short time scales, with angular momentum decay and polhode damping due to residual disturbances modeled on longer time scales, greater than say one clay. The validity of this model is demonstrated to approximately 1% using the Gravity Probe B flight data spanning 1 year. The success of this model allows for the prediction of polhode variations in the sensor readout scale factor to ∼ 10-4, which is critical to the accurate reduction of the Gravity Probe B science data and the achievement of overall mission goals. The model is then extended to the application of an advanced gravitational reference sensor for gravitational wave observation, fundamental physics and inertial navigation. Analytical modeling and numerical simulation show that a data processing technique can produce picometer level mass center measurements and one part per million spin frequency determination on-board the spacecraft in real-time. However, dynamic range limitations of the optical displacement sensor require that the mass center offset from the geometric center be less than 100 mu, which is challenging due to test mass density inhomogeneities on the order of 10-5. In the final portion of this dissertation, a laboratory demonstration of a novel technique for measuring the mass center of a sphere to 150 nm, approaching the 100 nm requirement and nearly one order of magnitude better than previous methods, is presented. The new technique again takes advantage of the symmetry of the sphere to spectrally shift the mass center information above low frequency by rolling the sphere down a set of parallel rails.
机译:通过将无阻力航天器中的测试质量扰动降低到目前已证明的数量级以下,可以实现令人兴奋的物理学和精确惯性导航的新领域。理想的无阻力测试质量的质心是沿纯短地线行进的参考点。无阻力航天器的目的是保护测试质量不受所有外部干扰,同时不要引入其他干扰。球体的优点是方向不变。因此,球形测试质量不需要在航天器上施加任何力来控制测试质量的方向。由于无需致动,因此可以将测试质量块与航天器之间的间隙扩大到球半径范围内的大小。消除了测试质量的压力和较大的间隙,可以减少或共同消除作用在测试质量上的最大干扰。此外,旋转球体可以使固定于身体的特征在频谱上移动到不会干扰无阻力控制或科学任务的频率。旋转球体的角动量矢量是一个相对于残余扭矩具有鲁棒性的量,为局部惯性框架提供了方向参考。在本文中,具有旋转球体测试质量的无阻力传感器输出的通用模型为发达。测试质量的可测量特征(相对于质量中心的表面几何形状,磁势等)被写为球谐函数的扩展。假设测试质量块相对于传感器的刚体运动在短时间尺度上服从欧拉方程,由于较长时间尺度上的残余扰动导致角动量衰减和极化阻尼,大于一个粘土。使用重力探针B跨越1年的飞行数据,证明该模型的有效性约为1%。该模型的成功实现,可以将传感器读数比例因子中的多极变化预测为10-4,这对于精确减少重力探测器B的科学数据以及实现总体任务目标至关重要。然后将该模型扩展到先进的重力参考传感器的应用,以进行重力波观测,基础物理学和惯性导航。分析模型和数值模拟表明,一种数据处理技术可以实时生成皮克级质心测量结果,并实时确定航天器上百万分之一自旋频率的确定。然而,光学位移传感器的动态范围限制要求质心偏离几何中心的距离小于100微米,这是有挑战性的,因为测试质量密度的不均匀性约为10-5。在本论文的最后部分,实验室演示了一种新颖的技术,该技术可将球的质心测量到150 nm,接近100 nm的要求,比以前的方法好近一个数量级。新技术再次利用球体的对称性,通过使球体沿着一组平行轨道滚动,将质心信息从频谱上转移到低频以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号