首页> 外文学位 >Micro-, nano-integrated composites based on cellulose microfibers.
【24h】

Micro-, nano-integrated composites based on cellulose microfibers.

机译:基于纤维素微纤维的微米,纳米集成复合材料。

获取原文
获取原文并翻译 | 示例

摘要

Three different cellulose microfiber based composites have been fabricated through micro-, nano-integrated methods. The morphology, properties and application of these composites were demonstrated.Biocomposites of cellulose microfibers and enzymes (laccase and urease) were obtained through layer-by-layer assembly by alternate adsorption with oppositely charged polycations and enzymes. The formation of organized polyelectrolyte and enzyme multilayer films of 15-20 nm thickness was demonstrated by quartz crystal microbalance, zeta-potential analysis and confocal laser scanning microscope. These biocomposites retained enzymatic catalytic activity, which was proportional to the number of coated enzyme layers. For laccase-fiber composites, around 70% of its initial activity was retained after 45 days storage at 4°C. The synthesis of calcium carbonate microparticles on urease-fiber composites confirmed urease functionality and demonstrated its possible applications. This strategy could be employed to fabricate fiber-based composites with novel biological functions.Nanocoating of poly(3,4-ethylenedioxythiophene) - poly(styrenesulfonate) (PEDOT-PSS) and aqueous dispersion of carbon nanotubes (CNT-PSS) on cellulose microfibers has been developed to make a conductive cellulose microfibers based composite. To construct the multilayers on cellulose microfibers, cationic poly(ethyleneimine) (PEI) has been used in alternate deposition with anionic conductive PEDOT-PSS and solubilized CNT-PSS. Using a Keithley microprobe measurement system, current--voltage measurements have been carried out on single composite microfibers after deposition of each layer to optimize the electrical properties of the coated microfibers. The conductivity of the resultant wood microfibers was in the range of 10-2 to 2 S.cm -1, depending on the architecture of the coated layer. Further, the conductivity of the coated wood microfibers increased up to 20 S.cm -1 by sandwiching a multilayer of conductive co-polymer PEDOT-PSS with CNT-PSS through a polycation (PEI) interlayer. Moreover, paper hand sheets were manufactured from these coated wood microfibers with conductivity ranging from 1 to 10 S.cm-1. A paper composite structure consisting of conductive/dielectric/conductive layers that acts as a capacitor, has also been fabricated and is reported.Cellulose microfibers were combined with cross-linked gelatin to make biocompatible porous microscaffolds for the sustained growth of brain cell and human Mesenchymal Stem Cells (hMSCs) in a three dimensional (3-D) structure. Live imaging, using confocal microscopy, indicated that 3-D microscaffolds, composed of gelatin or cellulose fiber/gelatin, both supported brain cell adhesion and growth for 16 days in vitro. Cellulose microfiber/gelatin composites containing up to 75% cellulose fibers can withstand higher mechanical load than gelatin alone, and composites also provided linear pathways along which brain cells could grow compared to more clumped cell growth in gelatin alone. Therefore, the bulk cellulose microfiber provides a novel skeleton in this new scaffold material. The cellulose fiber/gelatin scaffold supported hMSCs growth and extra cellular matrix formation. hMSCs osteogenic and adipogenic assays indicated that hMSCs cultured in cellulose fiber/gelatin composite preserved the multi-lineage differentiation potential. As natural, biocompatible components, the combination of gelatin and cellulose microfibers, fabricated into 3-D matrices, may therefore provide optimal porosity and tensile strength for long-term maintenance and observation of cells.
机译:通过微米,纳米集成方法已经制造了三种不同的基于纤维素微纤维的复合材料。证明了这些复合材料的形态,性能和应用。纤维素微纤维和酶(漆酶和脲酶)的生物复合材料是通过带相反电荷的聚阳离子和酶的交替吸附,逐层组装得到的。通过石英晶体微天平,ζ电位分析和共聚焦激光扫描显微镜证明了厚度为15-20nm的有组织的聚电解质和酶多层膜的形成。这些生物复合物保留了酶催化活性,该活性与被包被的酶层的数量成比例。对于漆酶-纤维复合材料,在4°C下储存45天后,其初始活性的约70%被保留。在脲酶-纤维复合材料上合成碳酸钙微粒证实了脲酶的功能性并证明了其可能的应用。该策略可用于制备具有新型生物学功能的纤维基复合材料。聚(3,4-乙撑二氧噻吩)-聚(苯乙烯磺酸盐)(PEDOT-PSS)纳米涂层和碳纳米管(CNT-PSS)在纤维素微纤维上的水分散体已经开发出用于制造导电纤维素微纤维的复合材料。为了在纤维素微纤维上构建多层,阳离子聚(乙烯亚胺)(PEI)已与阴离子导电PEDOT-PSS和可溶的CNT-PSS交替沉积使用。使用吉时利(Keithley)微探针测量系统,已在沉积每一层后对单个复合微纤维进行了电流-电压测量,以优化涂层微纤维的电性能。取决于涂层的结构,所得的木材微纤维的电导率在10-2至2S.cm -1的范围内。此外,通过将导电共聚物PEDOT-PSS与CNT-PSS之间的夹层通过聚阳离子(PEI)夹层夹在中间,涂覆的木材微纤维的电导率增加至20 S.cm -1。而且,由这些涂覆的木质微纤维制成的手抄纸具有1至10S.cm-1的导电率。还已经制作并报道了由导电/介电/导电层作为电容器的纸复合结构。三维(3-D)结构中的干细胞(hMSC)。使用共聚焦显微镜的实时成像表明,由明胶或纤维素纤维/明胶组成的3-D微支架在体外支持16天的脑细胞粘附和生长。含有高达75%纤维素纤维的纤维素微纤维/明胶复合材料比单独的明胶可以承受更高的机械负荷,并且与单独的明胶相比,聚集成团块还提供了大脑细胞可以沿着其生长的线性途径。因此,大块纤维素微纤维在这种新型支架材料中提供了一种新颖的骨架。纤维素纤维/明胶支架支持hMSCs的生长和细胞外基质的形成。 hMSC的成骨和成脂实验表明,在纤维素纤维/明胶复合物中培养的hMSC保留了多谱系分化潜能。作为天然的,生物相容性的成分,明胶和纤维素微纤维的组合(制成3D基质)可以为长期维护和观察细胞提供最佳的孔隙率和拉伸强度。

著录项

  • 作者

    Xing, Qi.;

  • 作者单位

    Louisiana Tech University.;

  • 授予单位 Louisiana Tech University.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 101 p.
  • 总页数 101
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号