首页> 外文学位 >Ultrasound-Based Sensing Strategy for Control of Upper Extremity Prosthetics
【24h】

Ultrasound-Based Sensing Strategy for Control of Upper Extremity Prosthetics

机译:基于超声的上肢假肢控制策略

获取原文
获取原文并翻译 | 示例

摘要

A number of clinical and scientific applications require the ability to sense complex synergies of muscle activity non-invasively and infer volitional motor intent. These include assistive devices for rehabilitation of motor impairments (such as multi-articulated prosthetic hands, robots, and exoskeletons) and investigations of motor control, biomechanics, and human factor studies. Surface electromyography (sEMG), which measures the electrical activity of motor units at the skin surface, has been the predominant method for sensing muscle activity for these applications; however, there are fundamental limitations to sEMG sensing strategies, such as limited specificity and low SNR. While pattern recognition strategies have been used to improve the functionality of multi-electrode myoelectric sensing for prosthetic control applications, these strategies still do not produce robust graded signals for fine control. The use of implantable EMG and targeted muscle reinnervation strategies avoid some of the limitations of sEMG for prosthetic control, but these strategies are invasive and not well-suited for sensing muscle activity in various applications, such as stroke rehabilitation. Therefore, there continues to be a clear need for better non-invasive sensing of muscle activity. Recently, ultrasound imaging of muscle deformation has been shown as a possible alternative to sEMG for analyzing muscle activity. Ultrasound imaging enables the visualization of the cross-sectional anatomy of muscles and tendons. Real-time imaging can be used to track muscle contraction and relaxation. A significant benefit of ultrasound over sEMG is the ability to visualize deep musculature and the synergistic activity of different muscle compartments. This dissertation proposes a new strategy for sensing muscle activity based on real-time ultrasound imaging. The results verified that the ultrasound-based methodology is able to produce robust signals from contiguous functional compartments deep inside the muscle, a capability exceeding that of sEMG. Ultrasound imaging could potentially be attractive as a sensing strategy for upper extremity prosthetic control and as a muscle-computer interface (MCI) for rehabilitation robotics and exoskeletons.;For a practical ultrasound-based MCI that could be integrated into a compact wearable system, the use of a number of single element ultrasound transducers distributed around a region-of-interest is more practical than dense imaging array. Optimal channel selection is a common area of interest in brain-computer interface community and recently has been investigated for sEMG based MCIs in dense electrode setups. The main advantage of the channel optimization is the reduction in computation, reducing power consumption and improving system operation time. Among the different proposed algorithms, distance-based channel/feature subset selection (DFSS) and correlation-based channel/feature subset selection (CFSS) are commonly used to extract optimal channel/feature subsets for sEMG pattern recognition control. DFSS evaluates the class discrimination impact of each feature/channel using a distance measure such as Fisher's criterion (FC) while CFSS uses mutual information (MI) that each feature/channel represents about different classes. In this dissertation, I investigate the effect of ultrasound channel reduction on classification performance using distance-based channel subset selection (DCSS) and correlation-based channels subset selection (CCSS) where FC and MI are used as a measure of class discrimination, respectively. These two techniques are similar to the DFSS and CFSS except that they are feature selection independent. The results have shown that the number of channels can be reduced significantly (from 128 to 4) without sacrificing performance, measured by classification accuracy (CA). Furthermore, the selection of the discriminative spatial locations is highly subject specific which enables optimal system design on an individual basis.
机译:许多临床和科学应用需要能够无创地感知肌肉活动的复杂协同作用并推断出自愿运动意图。这些工具包括用于修复运动障碍的辅助设备(例如多关节假肢手,机器人和外骨骼)以及运动控制研究,生物力学和人为因素研究。用于测量皮肤表面运动单元电活动的表面肌电图(sEMG)是这些应用中检测肌肉活动的主要方法。但是,sEMG传感策略存在一些基本限制,例如有限的特异性和低SNR。虽然模式识别策略已被用于改善用于修复控制应用的多电极肌电感测的功能,但这些策略仍无法产生用于精细控制的鲁棒渐变信号。植入式EMG和有针对性的肌肉再支配策略的使用避免了sEMG在假体控制方面的某些局限性,但这些策略具有侵入性,不适合在各种应用(例如中风康复)中感知肌肉活动。因此,仍然明显需要更好的非侵入性的肌肉活动感测。近来,已经显示了肌肉变形的超声成像作为用于分析肌肉活动的sEMG的可能替代。超声成像可以使肌肉和肌腱的横截面解剖可视化。实时成像可用于跟踪肌肉的收缩和松弛。与sEMG相比,超声的显着优势是能够可视化深层肌肉组织以及不同肌肉区室的协同活动。本文提出了一种基于实时超声成像的肌肉活动感知新策略。结果证明,基于超声的方法能够从肌肉深处的连续功能隔室中产生可靠的信号,其能力超过了sEMG。超声成像可能作为上肢假肢控制的传感策略以及作为康复机器人和外骨骼的肌肉计算机接口(MCI)的潜在吸引力。对于实用的基于超声的MCI,可以将其集成到紧凑的可穿戴系统中,使用多个围绕感兴趣区域分布的单元素超声换能器比密集成像阵列更实用。最佳通道选择是脑机接口社区中一个常见的关注领域,最近已针对密集电极设置中基于sEMG的MCI进行了研究。通道优化的主要优点是减少了计算量,降低了功耗并缩短了系统运行时间。在提出的不同算法中,通常使用基于距离的通道/特征子集选择(DFSS)和基于相关性的通道/特征子集选择(CFSS)来提取用于sEMG模式识别控制的最佳通道/特征子集。 DFSS使用距离度量(例如Fisher准则(FC))评估每个功能/通道的类别歧视影响,而CFSS使用每个功能/通道代表的有关不同类别的互信息(MI)。在本文中,我研究了使用基于距离的通道子集选择(DCSS)和基于相关性的通道子集选择(CCSS)来减少超声通道对分类性能的影响,其中,FC和MI分别用作分类歧视的一种度量。这两种技术与DFSS和CFSS相似,区别在于它们与特征选择无关。结果表明,通过分类精度(CA)进行测量,可以在不牺牲性能的情况下显着减少通道数量(从128个减少至4个)。此外,区分性空间位置的选择是高度特定于主题的,这使得可以基于个人进行最佳系统设计。

著录项

  • 作者

    Akhlaghi, Nima.;

  • 作者单位

    George Mason University.;

  • 授予单位 George Mason University.;
  • 学科 Biomedical engineering.;Computer science.;Engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 120 p.
  • 总页数 120
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号