首页> 外文学位 >Detecting the spatiotemporal dynamics of neural activity on the cortical surface: Applying anatomically constrained beamforming to EEG.
【24h】

Detecting the spatiotemporal dynamics of neural activity on the cortical surface: Applying anatomically constrained beamforming to EEG.

机译:检测皮质表面神经活动的时空动态:将解剖学约束的波束成形应用于脑电图。

获取原文
获取原文并翻译 | 示例

摘要

The neurophysiological signals that are recorded in EEG (electroencephalography) and MEG (magnetoencephalography) originate from current flow perpendicular to the cortical surface due to the columnar organization of pyramidal cells in the cortical gray matter. These locations and directions have been used as anatomical constraints for dipolar sources in estimations of neural activity from MEG recordings. Here we extend anatomically constrained beamforming to EEG, which requires a more sophisticated forward model than MEG due to the blurring of the electric potential at tissue boundaries, but in contrast to MEG, EEG can account for both tangential and radial sources. Using computed tomography (CT) scans we create a realistic three-layer head model consisting of tessellated surfaces representing the tissue boundaries cerebrospinal fluid-skull, skull-scalp and scalp-air. The cortical gray matter surface, the anatomical constraint for the source dipoles, is extracted from magnetic resonance imaging (MRI) scans. EEG beamforming is implemented in a set of simulated data and compared for three different head models: single sphere, multi-shell sphere and realistic geometry multi-shell model that employs a boundary element method. Beamformer performance is also analyzed and evaluated for multiple dipoles and extended sources (patches). We show that using anatomical constraints with the beamforming algorithm greatly reduces computation time while increasing the spatial accuracy of the reconstructed sources of neural activity. Using the spatial Laplacian instead of the electric potential in combination with beamforming further improves the spatial resolution and allows for the detection of highly correlated sources.
机译:由于皮层灰质中锥体细胞的柱状组织,EEG(脑电图)和MEG(磁脑图)中记录的神经生理信号源自垂直于皮质表面的电流。这些位置和方向已被用作偶极来源的解剖学约束,用于根据MEG记录估算神经活动。在这里,我们将解剖学上受约束的波束形成扩展到EEG,由于组织边界处的电势模糊,因此需要比MEG更复杂的正向模型,但与MEG相比,EEG可以同时考虑切向和径向源。使用计算机断层扫描(CT)扫描,我们创建了一个现实的三层头部模型,该模型由棋盘格化的表面组成,这些表面代表了脑脊液头骨,头皮和头皮空气的组织边界。皮质灰质表面是源偶极子的解剖学约束,是从磁共振成像(MRI)扫描中提取的。 EEG波束成形是在一组模拟数据中实现的,并针对三种不同的头部模型进行了比较:单球,多壳球和采用边界元方法的逼真的几何多壳模型。还针对多个偶极子和扩展源(补丁)分析并评估了波束形成器的性能。我们表明,将束缚算法与解剖学约束一起使用可大大减少计算时间,同时增加了重建的神经活动源的空间准确性。使用空间拉普拉斯算子代替电势结合波束成形可以进一步提高空间分辨率,并允许检测高度相关的源。

著录项

  • 作者

    Murzin, Vyacheslav.;

  • 作者单位

    Florida Atlantic University.;

  • 授予单位 Florida Atlantic University.;
  • 学科 Health Sciences Radiology.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 60 p.
  • 总页数 60
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号