首页> 外文学位 >Exploring Novel Glass Microfabrication Techniques for Sensor Applications
【24h】

Exploring Novel Glass Microfabrication Techniques for Sensor Applications

机译:探索用于传感器应用的新型玻璃微细加工技术

获取原文
获取原文并翻译 | 示例

摘要

This work presents the exploration of glass microfabrication techniques for fabricating novel chip-scale glass based transducers. Inexpensive and readily available, glass materials possess exceptional properties that include excellent electrical insulation, broad optical transparency, and biocompatibility. Glass substrates are highly in demand in Microelectromechanical systems (MEMS) but their use is not as widespread due to the limited availability of microfabrication processes. The focus of this dissertation is to develop glass microfabrication processes and their applications for MEMS sensors development.;Plasma etching processes on three compositions of glass substrates are explored using a modified inductively couple plasma reactive ion etching (ICP-RIE) system for high etch-rate, high aspect ratio, smooth etching performance, and understanding the fundamental plasma glass etching mechanism. Using SF6 as the plasma source gas and NF3 and H2O gases introduced downstream near the surface of the wafer through a diffuser gas inlet, etch rates as high as 1.06 microm/min, 1.04 microm/min, and 0.45 microm/min with surface smoothness of ~2 A, ~67 A, ~4 A are achieved for fused silica, borosilicate glass, and aluminosilicate glasses respectively after 5 minutes etches. High aspect ratio etch of 5.2:1, 10:1 and 2:1 are obtained for fused silica, borosilicate glass, and aluminosilicate glass respectively. Glass etching mechanism is further understood by analyzing the etch rates and corresponding partial pressure of plasma species detected by in-situ residual gas analyzer (RGA) with various position of the diffuser gas inlet. Statistical analysis indicates etch rate is critically influenced by ion flux. Fluorine based radicals and molecular fragments influence both the etch rate and surface smoothness of fused silica whereas they primarily influence the surface smoothness for borosilicate glass. The large fraction of impurity atoms of Ca and Al in aluminosilicate glass form non-volatile fluorides on the etch surface and therefore the etch rate and surface smoothness of aluminosilicate glass is primarily influenced ion flux and very little by the fluorine chemistry. We also examine the role of the layout of the metal mask layer on how it influences the charging of glass substrates during etching and therefore the etch rate.;In the second half of the thesis, chip scale glass blowing technique is explored for novel sensing and packaging applications. Arrays of on-chip spherical glass shells of hundreds of micrometers in diameter with ultra-smooth surfaces and sub-micrometer wall thicknesses have been fabricated and have been shown to sustain optical resonance modes with high Q-factors of greater than 50 million. The resonators exhibit temperature sensitivity of -1.8 GHz K-1 and can be configured as ultra-high sensitivity thermal sensors for a broad range of applications. By virtue of the geometry's strong light-matter interaction, the inner surface provides an excellent on-chip sensing platform that truly opens up the possibility for reproducible, chip scale, ultra-high sensitivity microfluidic sensor arrays. As a proof of concept we demonstrate the sensitivity of the resonance frequency as water is filled inside the microspherical shell and is allowed to evaporate. By COMSOL modeling, the dependence of this interaction on glass shell thickness is elucidated and the experimental results of the sensitivity of two different shell thicknesses is explained.;In the last chapter, chip-scale blown, glass microbubbles are explored for encapsulation of ferrofluid atop a micromachined quartz resonator configured as a magnetometer. The concept of a ferrofluid based magnetometer has been previously reported where the viscoelastic response of a thin interfacial ferrofluid layer loaded atop a high frequency shear wave quartz resonator to applied magnetic field is monitored. The magnetic field can be sensitively quantified by the changes in the at-resonance admittance characteristics of the resonator. However, under open conditions, continuous evaporation of the ferrofluid compromises the long term performance of the magnetometer. In this work, we integrate glass hemispherical microbubbles, used as vessels of ferrofluid, on the resonator chip to seal and prevent the evaporation of the ferrofluid liquid and drying out. Using these improvements, a minimum detectable field of 600 nT at 0.5 Hz is achieved. Moreover, comparing with the unsealed ferrofluid device, the lifetime of the glass microbubble integrated chip packaged device improved significantly from only few hours to over fifty days and continuing.
机译:这项工作提出了用于制造新颖的芯片级玻璃基换能器的玻璃微细加工技术的探索。廉价且易于获得的玻璃材料具有出色的性能,包括出色的电绝缘性,广泛的光学透明性和生物相容性。在微机电系统(MEMS)中对玻璃基板的需求很高,但是由于微加工工艺的有限可用性,玻璃基板的使用并不广泛。本论文的重点是开发玻璃微细加工工艺及其在MEMS传感器开发中的应用。;采用改进的感应耦合等离子体反应离子刻蚀(ICP-RIE)系统对玻璃基板的三种成分进行等离子体刻蚀,以实现高刻蚀。速率,高纵横比,平滑的蚀刻性能以及对基本的等离子玻璃蚀刻机理的了解。使用SF6作为等离子源气体,并通过扩散气体入口在晶片表面附近向下游引入NF3和H2O气体,蚀刻速率高达1.06微米/分钟,1.04微米/分钟和0.45微米/分钟,表面光滑度为蚀刻5分钟后,熔融石英,硼硅酸盐玻璃和硅铝酸盐玻璃分别达到〜2 A,〜67 A,〜4A。对于熔融石英,硼硅酸盐玻璃和硅铝酸盐玻璃,分别获得了5.2:1、10:1和2:1的高纵横比蚀刻。通过分析由扩散气体入口不同位置的原位残留气体分析仪(RGA)检测到的等离子体物种的蚀刻速率和相应的分压,可以进一步了解玻璃蚀刻机理。统计分析表明蚀刻速率受离子通量的严重影响。氟基自由基和分子碎片会影响熔融石英的蚀刻速率和表面光滑度,而它们主要影响硼硅酸盐玻璃的表面光滑度。铝硅酸盐玻璃中的大部分Ca和Al杂质原子在蚀刻表面上形成非挥发性氟化物,因此铝硅酸盐玻璃的蚀刻速率和表面光滑度主要受离子通量的影响,而很少受到氟化学的影响。我们还研究了金属掩模层的布局在蚀刻过程中如何影响玻璃基板的电荷以及蚀刻速率的作用。包装应用。已经制造了直径为数百微米,表面超光滑,壁厚为亚微米的片上球形玻璃壳阵列,这些阵列玻璃壳能够以大于5000万的高Q因子维持光学共振模式。该谐振器具有-1.8 GHz K-1的温度灵敏度,可以配置为超高灵敏度热传感器,适用于广泛的应用。由于几何形状之间强大的光-物质相互作用,内表面提供了出色的片上传感平台,真正为可再现的芯片级超高灵敏度微流控传感器阵列开辟了可能性。作为概念验证,我们证明了共振频率的敏感性,因为水被填充在微球壳内部并被蒸发。通过COMSOL建模,阐明了这种相互作用对玻璃壳厚度的依赖性,并解释了两种不同壳厚度的敏感性的实验结果。在最后一章中,研究了芯片级吹塑的玻璃微泡,用于在顶部封装铁磁流体。配置为磁力计的微机械石英谐振器。先前已经报道了基于铁磁流体的磁力计的概念,其中监测了加载在高频剪切波石英谐振器上的薄界面铁磁流体层对施加磁场的粘弹性响应。可以通过谐振器的谐振导纳特性的变化来灵敏地量化磁场。但是,在开放条件下,铁磁流体的连续蒸发会损害磁力计的长期性能。在这项工作中,我们将用作铁磁流体容器的玻璃半球形微气泡整合到谐振器芯片上,以密封并防止铁磁流体蒸发并干燥。使用这些改进,可以在0.5 Hz时获得600 nT的最小可检测场。而且,与未密封的铁磁流体装置相比,玻璃微泡集成芯片封装的装置的寿命从仅数小时显着提高到超过五十天,并且持续不断。

著录项

  • 作者

    Zhang, Chenchen.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号